APPENDIX F

MEMORANDUM: LANDSCAPE CONTEXT SENSITIVITY CRITERIA

Volume III November 2, 2016

Reata Wash Flood Control Improvement Study

Contract No. 2014-168-COS

Memorandum: Landscape Context Sensitivity Criteria

August 31, 2016

Prepared for:

Capital Project Management 7447 E. Indian School Rd. Suite 205 Scottsdale, AZ. 85251

Prepared By:

Floor Associates 1425 North 1st Street Phoenix, Arizona 85004

In Association with:

TABLE OF CONTENTS

1.	Introduction	2
2.	Context Sensitive Design	2
3.	Landscape Methodology	2
4.	Native Plant Ordinance Compliance	3
5.	Revegetation Methodology	3
	Table – 1: Native Revegetation Hydroseed Mix	4
6.	Landscape Summary Reach 1 through 5	5
	Exhibit — 1: Study Location Reach Map	7
7.	Landscape Graphics	8

1. Introduction

The Reata Wash Flood Control Improvement Study's (Reata Wash Study) drainage corridor proposes to follow an alignment starting just north of Pinnacle Peak Road south to McDowell Mountain Ranch Road at Westworld. The existing landscape along the entire alignment consists primarily of native upper Sonoran Desert plant materials typified by Foothill Palo Verde, Ironwood and Mesquite trees, saguaro, barrel, prickly pear and cholla cacti, Jojoba, Creosote, burr sage and brittlebush perennial shrubs and native grasses. It is anticipated that there will be areas adjacent to the proposed channel that may be disturbed if channel construction occurred. These disturbed areas would be revegetated to reestablish the natural desert conditions consistent with existing conditions.

The Reata Study implemented a Context Sensitive Design approach to integrate a potential project in harmony with the existing landscape and community context including:

- Landscape Methodology
- Compliance with City of Scottsdale Native Plant Ordinance requirements
- Revegetation Methodology
- Landscape summaries of each Reach

2. Context Sensitive Design

Should the Reata Wash Study be approved by council and move forward, it would utilize a Context Sensitive Design (CSD) approach. CSD is a collaborative, interdisciplinary approach that involves all stakeholders to develop a design that fits a project's physical setting and preserves scenic, aesthetic and environmental resources, while maintaining safety and full function of the flood control system. CSD is an approach that considers the total context within which the Reata Wash Study area would exist by incorporating community values, physical needs and natural environment as an integral part of any future design.

3. Landscape Methodology

The Context Sensitive Design approach to the overall landscape would be to restore areas disturbed by construction to native desert conditions, including natural densities of

native trees, cacti, shrubs and grasses, as well as the use of native topdressing materials. The goal will be to reestablish the native desert vegetation and appearance to facilitate landscape transitions that would blend into the adjacent undisturbed desert. This would be accomplished through a process of native revegetation including the planting and transplanting of native trees and cacti salvaged from onsite and the installation of a native hydroseed mix throughout the entire zone of disturbance.

4. Native Plant Ordinance Compliance

All proposed landscape would comply with the City of Scottsdale Native Plant Ordinance (Section 7.500) and Chapter 10 of the City of Scottsdale Design Standards and Policy Manual, under which a Native Plant Inventory would be conducted within the proposed disturbance limit. As required, all native trees and cacti would be surveyed to determine each plant's viability to remain in place, be salvaged prior to construction or be destroyed. Plants designated to remain would be protected during the construction process. All plant designated to be salvaged would be transplanted by an authorized salvage contractor and would be held and maintained in an onsite nursery until the revegetation process, at which time the plants would be relocated onsite to reestablish natural plant densities throughout the area of construction disturbance.

5. Revegetation Methodology

Trees and cacti salvaged per the Native Plant Ordinance would be transplanted from the onsite nursery into the revegetation areas to reestablish natural plant densities and distributions. Transplanted trees would receive temporary, supplemental irrigation until established. All areas of construction disturbance would be sprayed with a native hydroseed mulch containing native species of grasses, perennials, shrubs and trees as listed below. Hydroseeded area would be allowed to establish naturally without supplemental irrigation. It is suggested that a hydroseed mulch be used as shown in Table-1.

Table -1 Revegetation Hydroseed Mix

Botanical name	Common name	Pounds/Acre
Grasses		
Aristida purpurea	Purple Three Awn	1.0
Bouteloua aristidoides	Needle grama	0.5
Bouteloua rothrockii	Six Week's Grama	0.5
Bouteloua rothrockii	Rothrock Grama	0.5
Wildflowers/Forbs		
Baileya multiradiata	Desert Marigold	1.0
Cassia couesii	Desert Senna	1.0
Escholtzia mexicana	Mexican Poppy	2.0
Lesquerella gordonii	Gordons Bladderpod	1.0
Penstemon parryi	Parry's Penstemon	0.5
Phacelia crenulata	Desert Phacelia	1.0
Plantago ovata	Desert Indian Wheat	2.0
Sphaeralcea ambigua	Desert Globemallow	1.0
Shrubs (suffrutescent)		
Ambrosia deltoids	Triangle Leaf Bursage	4.0
Encelia farinosa	Brittlebush	0.5
Eriogonum fasciculatum var. polifolium	Flat-top Buckwheat	0.5
Woody Shrubs and Trees		
Acacia constricta	White Thorn Acacia	1.0
Atriplex canescens	Four Wing Saltbush	0.5
Larrea tridentata	Creosote Bush	3.0

Landscape Summary Reach 1 through 5

The following outlines the Context Sensitive Landscape methods for each Reach based on this study's recommended solution (See Exhibit 1 – Study Location Reach Map).

Reach 1 – Pinnacle Peak Road to 1,000 feet north

The recommended solution creates a rough surfaced hard lined open channel using a "U" shaped channel within the existing corridor. As such, no landscape revegetation would be included within the drainage channel. Revegetation would be limited to only those areas necessarily disturbed during construction.

Reach 2 (north) – Pinnacle Peak Road to approximately 1,300 feet south

The recommended solution consists of a concrete 'U' channel. Construction of the 'U' channel would require disturbance outside of the final channel structure. A construction disturbance boundary would be established prior to construction and all native trees and cacti would be inventoried and salvaged per the Native Plant Ordinance, as noted above. After construction of the channel is complete, salvaged trees and cacti would be replanted throughout the areas of construction disturbance and adjacent to drainage channel to reestablish native densities. All disturbed areas would be treated with the native hydroseed, as shown in Table -1.

Reach 2 (south) – Pinnacle Peak Road to Cross Canyon Way

The recommended solution for the south portion of Reach 2 transitions from the 'U' channel design to a grouted rock trapezoidal channel. A construction disturbance boundary would be established prior to construction and all native trees and cacti would be inventoried and salvaged per the Native Plant Ordinance. After construction of the channel is complete, salvaged trees and cacti would be replanted throughout the areas of construction disturbance and adjacent to drainage channel to reestablish native densities. All disturbed areas would be treated with the native hydroseed, as shown in Table –1.

Reach 3 – Northern Segment

The recommended solution is an incised grouted rock trapezoidal channel, similar to the south section of Reach 2. A construction disturbance boundary would be established prior to construction and all native trees and cacti would be inventoried and salvaged per the Native Plant Ordinance. After construction of the channel is complete, salvaged trees and cacti would be replanted throughout the areas of construction disturbance and adjacent to drainage channel to reestablish native densities. All disturbed areas would be treated with the native hydroseed, as shown in Table –1.

Reach 3 – Southern Segment

Construction within the existing earthen channel would be limited to only those areas identified as requiring additional buried bank protection to achieve sufficient scour protection. Revegetation efforts would be limited to only those areas disturbed by construction of the additional buried bank protection.

Reach 4 – Thompson Peak Parkway to Bell Road

Similar to the southern portion of Reach 3, construction within Reach 4's existing earthen channel would be limited to only those areas that may require additional buried bank protection to achieve sufficient scour protection. Revegetation efforts would be limited to only those areas disturbed by construction of the additional buried bank protection.

Reach 5 – Bell Road to East McDowell Mountain Ranch Road

The recommended solution is an incised earthen trapezoidal channel with buried bank protection, including a sediment basin immediately upstream of the McDowell Mountain Ranch Road bridge. The area contained within this Reach is adjacent to WestWorld, and these overbank areas could be used for future event parking. Revegetation will be limited in this reach, but all areas disturbed would, at a minimum be treated with a dust control palliative to meet Maricopa County requirements.

EXHIBIT -1 Study Location Reach Map PINNACLE PEAK RD FOOTHILLS DR 38 DESERT CAMP DRIVE HULAPAI ROAD BELL ROAD RANCH ROA ARIZONA CANAL

7. Landscape Graphics

The following represent the typical context sensitive native plant vegetation proposed for each Reach for the three alternative solutions identified in this study: the Recommended Solution, Alternative B and Alternative C.

REACH 1

RECOMMENDED SOLUTION: U-CHANNEL WALL & CONCRETE ROCK INVERT

REACH 2 NORTH

REACH 2 SOUTH

RECOMMENDED SOLUTION & ALTERNATIVE B: GROUTED ROCK CHANNEL

ALTERNATIVES C: BOX CULVERT

REACH 3 NORTH

RECOMMENDED SOLUTION & ALTERNATIVE B: GROUTED ROCK CHANNEL

Contract No. 2014-168-COS

REACH 4

EXISTING EARTHEN CHANNEL TO REMAIN

REACH 3 SOUTH

EXISTING EARTHEN CHANNEL TO REMAIN

REACH 5

EARTHEN CHANNEL WITH REVEGETATION AND DUST CONTROL PALLIATIVE

APPENDIX G

MEMORANDUM: HYDROLOGIC REVIEW

Volume III November 2, 2016

Reata Wash Flood Control Improvement Study

Contract No. 2014-168-COS

Memorandum: Hydrologic Review

August 31, 2016

Prepared for:

Capital Project Management 7447 E. Indian School Rd. Suite 205 Scottsdale, AZ. 85251

JE Fuller Hydrology & Geomorphology, Inc. 1 West Deer Valley Road, Suite 101 Phoenix, AZ 85027

In Association with:

Table of Contents

Sec	<u>ction</u> <u>P</u>	age
1.	Executive Summary	1
2.	Overview	1
3.	Study Area	2
4.	Data Sources	4
5.	Existing Hydrologic Models	4
6.	Criteria for Hydrologic Model Compliance	8
7.	Conclusions and Recommendations	. 10
Lis	st of Figures	
Fig	ure 3–1 General Study Area Location	3
Fig	ure 5–1 Location of Reata Pass Fan Apex within the Study Boundary	7
Lis	st of Tables	
Tal	ole 5–1 Reata Wash Flood Control Improvement Study Hydrologic Report Summary	4
Tab	ole 6–1 Hydrologic Model Summary	9

EXPIRES: 9-30-17

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by JE Fuller Hydrology & Geomorphology, Inc., shall be without liability to JE Fuller Hydrology & Geomorphology, Inc.

1. Executive Summary

A review and assessment of existing hydrologic models and reports pertinent to the Reata Wash Flood Control Improvement Study area was conducted. The purpose of this review was to determine the applicability of the existing hydrologic models to the current study, as well as assess the need for alterations and updates. Although a large portion of the historical hydrologic models meet the minimal Federal Emergency Management Agency (FEMA) requirements, the Draft Pinnacle Peak South (PPS) Area Drainage Master Study (ADMS) Hydrology and Hydraulics (H&H) Report model, prepared by TY Lin International (TY Lin) in 2012, was evaluated and advanced as the most appropriate hydrologic model for the following reasons:

- Most recent hydrologic modeling effort within the Reata Wash watershed.
- Hydrologic model used current Flood Control District of Maricopa County (FCDMC) standards and methods. Model includes updated land use, soils and hydrologic basin boundaries accounting for existing watershed conditions.
- Hydrologic model and model input data reviewed extensively by FCDMC staff.
- Hydrologic model covers approximately 85% of the Reata Wash watershed and will require less effort to adjust for the Reata Wash corridor.

The following modifications will be incorporated into the Draft PPS ADMS hydrologic model for use in the Reata Wash Flood Control Improvement Study:

- Land use categories and boundaries within the model limits will be checked against project aerials (2014) and flood control facilities not currently existing or under construction will be removed from the hydrologic model.
- The watershed boundaries will be extended to include the Reata Wash Corridor from Pinnacle Peak Road south to Bell Road. This area is approximately 1.6 square miles of the 2.0 square mile Reata Wash major basin.
- A full review of the input parameters will be conducted as part of the Reata Wash Flood Control Improvement Study Quality Control program.

The updates and adjustments to the Draft PPS ADMS hydrologic models described above will be documented in Reata Wash Flood Control Improvement Study, Hydrologic Modeling Memorandum. Refer to that memorandum for discussion of the results of the modeling effort recommended in this memorandum.

2. Overview

This memorandum documents the findings of the hydrologic Review and assessment conducted in support of the City of Scottsdale's (City) Reata Wash Flood Control Improvement Study. The assessment was performed by staff from JE Fuller/Hydrology & Geomorphology, Inc. (JE Fuller), as a subconsultant to Wood, Patel & Associates, Inc. (WPA), under Task 3 of City Contract # 2014-168-COS. The scope of services for Task 3 calls for a review of past hydrologic models and reports to assess their application and use to this project. The principal focus of the hydrologic model review will be addressing whether models are FEMA-compliant, and providing recommendations to eliminate any deficiencies. Recommendations may include updating the existing hydrologic model based on the findings of this review. Note that this memorandum was an initial project deliverable. The recommendations made in this memorandum were implemented after

authorization by City staff, and the results of the recommended modeling effort are described in the Hydrologic Modeling Memorandum, which was provided as a separate deliverable.

3. Study Area

The Reata Pass Alluvial Fan is located within the city limits of Scottsdale, Arizona along the western flank of the McDowell Mountains, and northeast of the Loop 101 Freeway and the Central Arizona Project (CAP) Canal (Figure 3–1).

4. Data Sources

Primary data sources include the City, FCDMC, and WPA. Full project data collection efforts were documented as part of Task 2 Data Collection. Relevant reports and hydrologic models are summarized in Section 5.

5. Existing Hydrologic Models

Table 5–1 is a listing of relevant reports and hydrologic modeling documentation within the Reata Wash watershed.

⁽¹⁾ Study Document Number	Title	Author	Date	Note
RW0180	Final Hydrology Report Outer Loop Freeway, North of the CAP Aqueduct	Simons, Li & Associates, Inc. (SLA)	4/1/87	Base hydrology for north Scottsdale First reference to CP51.
RW0187	Draft General Drainage Plan for North Scottsdale, Arizona	Water Resources Associates, Inc. (WRA)	9/2/88	Minor Adjustments to base model (RW0180)
RW0007	Hydrologic Analysis of Scottsdale Alluvial Fans 1- 6, Maricopa County, AZ	Cella Barr Associates	9/4/88	Original FEMA Fan Hydrology and Delineation, Established FEMA flows for fans 1-6. Short Geomorphology Section
RW0008	Hydrologic Analysis of Scottsdale Alluvial Fan Area	FCDMC	5/1/91	Flows substantially lower than the CB flows. Doesn't appear to be used for any of the subsequent studies.
RW0140	Sensitivity Analysis of Reata Pass Hydrology, Scottsdale, Arizona	WRA	11/8/91	Using the Upper Indian Bend Wash HEC-1 models, WRA ran 15 separate scenarios/model parameter permutations. Recommended Scenario 13 for hydrologic modeling for regional flood control.
RW0186	Final Report, Upper Indian Bend Wash Regional Drainage and Flood Control Plan Vol_I	WRA	7/6/92	Includes analysis on CAP detention basins with Reata Channel in-place

Contract No. 2014-168-COS

(1)Study Document Number	5–1. Reata Wash Flood Co	Author	Date	drologic Report Summary Note
RW0185	HEC_1_InputOutputData_ UpperIndianBendWash_Re gionalDrainageandFloodCo ntroIPlan_Vol_II_IBW	WRA	7/6/92	Used hydrology from Draft General Drainage Plan for North Scottsdale, Arizona (RW0187). Suggested REAT4 HEC-1 model but Conditional Letter of Map Revision (CLOMR) used REAT3A.
RW0101	Scottsdale Desert Greenbelt Reata Pass/Beardsley Wash Hydrology Report	Greiner, Inc. and City	2/1/95	Project specific hydrology created from the WRA models used in RW0140. Also used as the basis for SLA design documents (RW0104, 0105, 0106, 0107, and 0110).
RW0073	City of Scottsdale Desert Greenbelt Project Reata Pass/Beardsley Wash CLOMR, Volume I, Preliminary Design and Analysis	Greiner, Inc.	5/1/95	Referenced RW0101
RW0017	North Scottsdale Drainage Area, Arizona, Reconnaissance Study Flood Control and Related Purposes, R-4 Package, Appendix A, B, and C.	United States Army Corps of Engineers (USACE)	2/1/96	First reference with Accepted FEMA discharges at Reata Apex. USACE review of existing and project hydrology.
RW0072	Scottsdale Desert Greenbelt Phase One Design Reata Pass Wash Supplemental CLOMR Report	Greiner, Inc.	5/1/96	Includes updated hydrology based on FEMA Comments.
RW0177	DC Ranch Planning Unit III, V & VI Addendum to Part 4 Drainage Plan Study	WPA	12/25/01	Hydrology and Hydraulics Report and calculations for local development.
RW0146	Preliminary Design Report, Basis of Design for Reata Drainage Corridor Between Union Hills Drive and Bell Road.	WPA	09/27/03	Pg 2. Not CLOMR study. Hydrology does not go below Union Hills. No backup data to Review.

⁽¹⁾ Study Document Number	Title	Author	Date	Note
RW0175	Drainage Report for DC Ranch Planning Unit 1 - North Flood Protection	WPA	11/23/03	Hydrology and Hydraulics Report and calculations for local development.
RW0176	Drainage Report for DC Ranch Planning Unit 1 - South Flood Protection	WPA	10/2/03	Hydrology and Hydraulics Report and calculations for local development.
RW0124	Review of Pima Road DCR, AZ101 to Thompson Peak Parkway, Final Hydrology & Preliminary Design Report	Robert L. Ward, P.E.	06/19/04	General review of local modeling efforts by various consultants.
RW0126	Addendum to Master Plan for DC Ranch PU III, V, & VI Addendum to Part 4 Drainage Plan Study (10- 27-04) folder	WPA	10/24/04	Updated hydrology used in RW0146. Hydrology and Hydraulics Report and calculations for local development.
RW0178	Addendum to Master Plan for DC Ranch Planning Unit III, V & VI Addendum to Part 4 Drainage Plan Study	WPA	10/27/04	Hydrology and Hydraulics Report and calculations for local development.
RW0173	DC Ranch, Parcel T7, Reata Wash LOMR	WPA	12/8/04	Hydrology and Hydraulics Report and calculations for local development.
RW0174	Drainage Report for DC Ranch Parcel T7	WPA	12/8/04	Hydrology and Hydraulics Report and calculations for local development.
RW0064	Pinnacle Peak South Area Drainage Master Study, Hydrology and Hydraulics Report- Volume 1	TY Lin	4/26/12	Draft Unsealed Hydrology (HEC-1 modeling to current FCDMC standards above Reata Pass Fan Apex and contributing watershed east of Thompson Peak Parkway)

The nine (9) reports and accompanying hydrologic models in Table 6–1 could be directly correlated to the Reata Wash Flood Control Improvement Study area. Direct correlation included discussions of or direct inclusion of a concentration point for the hydrographic apex for the Reata Pass Fan. This concentration point is designated as either C51, CP51, C50, or CP22 depending on the particular hydrologic model. However, each of these points are in the same general location (as determined by report exhibit or discussion) and have a similar contributing drainage area. Refer to Figure 5–1 for a depiction of the location of this common concentration point.

⁽¹⁾ RW#### = Study document number for Reata Wash Flood Control Improvement Study. RW for Reata Wash with 4 digits assigned to document. Documents collected as part of the Reata Wash Flood Control Improvement Study.

The nine (9) hydrologic models, listed in Table 6–1, were broken out by hydrologic modeling methods and input variables for comparison purposes. They were then compared and assessed for FEMA compliance.

Contract No. 2014-168-COS

6. Criteria for Hydrologic Model Compliance

The following criteria were used to evaluate the level of compliance for the hydrologic models under review;

- Model methodology must meet current FEMA Standards. A list of FEMA-acceptable hydrologic models can be found on the following website;
 - http://www.fema.gov/hydrologic-models-meeting-minimum-requirement-national-flood-insurance-program
- Model methodology must meet current City guidelines as outlined in 2009 Design Standards & Policies Manual (Effective Date February 7th 2010).
- Model methodology must meet current FCDMC standards (FCDMC Drainage Design Manual. Hydrology 2013).

	Table 6–1 Hydrologic Model Summary												-
Study Document Number	Title	Author	Date	Common Reata Pass Alluvial Fan Apex ID	Calculated Flow at Reata Apex ID (cfs)	Model Method	Rainfall Duration (hours)	Rainfall Distribution	Aerial Reduction	Loss Method	Unit Hydrograph	Routing	Analysis
RW0007	Hydrologic Analysis of Scottsdale Alluvial Fans 1-6, Maricopa County, AZ	Cella Barr Associates	9/4/88	C51	14,867	HEC-1	24	Type 2A	Point rainfall reduced in model	Curve Number (CN)	Kinematic Wave	Kinematic Wave	Meets minimal City and FEMA Standards
RW0008	Hydrologic Analysis of Scottsdale Alluvial Fan Area	FCDMC	5/1/91	CP51	5,370	HEC-1	24	Type 2A	No Data Available	Green & Ampt	S-Graph	Normal Depth	Meets minimal City and FEMA Standards
RW0140	Sensitivity Analysis of Reata Pass Hydrology, Scottsdale, Arizona	WRA	11/8/91	CP51	9,324	HEC-1 (Scenario 13)	6	Hypothetical Storms (PH)	Depth/Area Storm (JD)	CN	Kinematic Wave	Kinematic Plus Modified Puls 8-pt	Meets minimal City and FEMA Standards
RW0101	Scottsdale Desert Greenbelt Reata Pass/Beardsley Wash Hydrology Report	Greiner, Inc.	2/1/95	C50	11,236	HEC-1 (Model 4)	6	PH	JD	CN	Kinematic Wave	Modified Puls 8-pt	Meets minimal City and FEMA Standards
RW0073	City of Scottsdale Desert Greenbelt Project Reata Pass/Beardsley Wash CLOMR, Volume I, Preliminary Design and Analysis	Greiner, Inc.	5/1/95	C50	11,236	HEC-1 (Model 4)	6	РН	JD	CN	Kinematic Wave	Modified Puls 8-pt	Meets minimal City and FEMA Standards
RW0017	North Scottsdale Drainage Area, Arizona, Reconnaissance Study Flood Control and Related Purposes, R-4 Package, Appendix A, B, and C.	USACE	2/1/96	CP51	No Data Available	HEC-1	6	Local Storm	No Data Available	Exponential (LE)	No Data Available	Muskingum	Meets minimal City and FEMA Standards
RW0072	Scottsdale Desert Greenbelt Phase One Design Reata Pass Wash Supplemental CLOMR Report	Greiner, Inc.	5/1/96	C50	11,236	HEC-1	6	РН	JD	CN (LS)	Kinematic Wave	Modified Puls 8-pt	Meets minimal City and FEMA Standards
RW0126	Addendum to Master Plan for DC Ranch PU III, V, & VI Addendum to Part 4 Drainage Plan Study (10-27- 04) folder	WPA	10/24/04	CP51	11,650	HEC-1	6	РН	D	CN (LS)	Kinematic Wave	Kinematic Plus Modified Puls 8-pt	Meets minimal City and FEMA Standards
RW0064	Pinnacle Peak South Area Drainage Master Study, Hydrology and Hydraulics Report- Volume Un-sealed, 95% draft	TY Lin	4/26/12	CP22	13,065	HEC-1	24	Type 2	JD	Green & Ampt	S-Graph	Modified Puls 8-pt	Meets minimal City and FEMA Standards, Meets Current FCDMC Standards. Most recent watershed study.

Abbreviations: cfs – cubic feet per second

Contract No. 2014-168-COS

7. Conclusions and Recommendations

All models in Table 6–1 meet the minimum FEMA requirements for hydrologic modeling within the Reata Wash Watershed. The Draft PPS ADMS H&H Report (hydrologic modeling) was advanced as the most appropriate model for the following reasons:

- Most recent hydrologic modeling effort within the Reata Wash watershed.
- Hydrologic model used current Flood Control District of Maricopa County (FCDMC) standards and methods. Model includes updated land use, soils and hydrologic basin boundaries accounting for existing watershed conditions.
- Hydrologic model and model input data reviewed extensively by FCDMC staff.
- Hydrologic model covers approximately 85% of the Reata Wash watershed and will require less effort to adjust for the Reata Wash corridor.

The following adjustments will be incorporated into the Draft PPS ADMS H&H Report hydrologic models for use in the Reata Wash Flood Control Improvement Study;

- Land use categories and boundaries within the model limits will be checked against project aerials (2014) and flood control facilities not currently existing or under construction will be removed from the hydrologic model.
- The watershed boundaries will be extended to include the Reata Wash Corridor from Pinnacle Peak Road south to Bell Road. This area is approximately 1.6 square miles of the 2.0 square mile Reata Wash major basin.
- A full review of the input parameters will be conducted as part of the Reata Wash Flood Control Improvement Study Quality Control program.

Updates and adjustments to the Draft PPS ADMS, hydrologic models will be documented in Reata Wash Flood Control Improvement Study, Hydrologic Modeling Memorandum.

APPENDIX H

MEMORANDUM: HYDROLOGIC MODELING

Volume III November 2, 2016

Reata Wash Flood Control Improvement Study

Contract No. 2014-168-COS

Memorandum: Hydrologic Modeling

August 31, 2016

Prepared for:

Capital Project Management 7447 E. Indian School Rd. Suite 205 Scottsdale, AZ. 85251

JE Fuller Hydrology & Geomorphology, Inc. 1 West Deer Valley Road, Suite 101 Phoenix, AZ 85027

In Association with:

Table of Contents

Se	<u>ction</u>	Page
1.	Introduction	1
2.	Mapping and Survey Information	3
3.	Hydrology	3
4.	Conclusion	14
<u>Li:</u>	st of Figures	
Fig	gure 1–1 General Study Area Location	2
Fig	gure 3–1 Dobson/Reata Wash Split Location	10
Fig	gure 3–2 100-year Peak Discharge (by Subbasin): HEC-1 vs. Regional Regression	14
<u>Li:</u>	st of Tables	
Та	ble 3–1 Modeled Retention/Detention Basins	4
Та	ble 3–2 Rainfall Data	5
Та	ble 3–3 Stream Gages	5
Та	ble 3–4 NOAA Atlas 14 Rainfall Data (in inches)	6
Та	ble 3–5 Calibration of Peak Discharges at Reata Pass Fan Apex (8.0 square miles)	9
Та	ble 3–6 Subbasin Peak Discharges	11
Та	ble 3-7 Concentration Point Peak Discharges	13

List of Appendices

Appendix A DDMSW Tables
Appendix B HEC-1 Models
Appendix C Exhibits

EXPIRES: 9-30-17

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by JE Fuller Hydrology & Geomorphology, Inc., shall be without liability to JE Fuller Hydrology & Geomorphology, Inc.

1. Introduction

1.1 Purpose of Hydrologic Study

This memorandum is prepared for the City of Scottsdale, Arizona (City) as part of the Reata Wash Flood Control Improvement Study. It summarizes the hydrologic modeling efforts for the Reata Wash Flood Control Improvement Study.

The purpose of the hydrologic modeling and documentation is to help establish a hydrologic model to be used as a basis for the Reata Wash Flood Control Improvement Study. This hydrologic information will be significant for the development of preliminary recommendations for corridor drainage alternatives.

1.2 Authority of Study

This study was authorized by the City under contract 2014-168-COS. JE Fuller/Hydrology & Geomorphology, Inc. (JE Fuller) is working as a subconsultant to Wood, Patel & Associates (WPA).

1.3 Location of Study

The Reata Wash Flood Control Improvement Study is located within the city limits of Scottsdale, Arizona along the western flank of the McDowell Mountains, and northeast of the Loop 101 Freeway and the Central Arizona Project (CAP) Canal (see Figure 1–1).

1.4 Methodology

As part of Task 3A of the Reata Wash Flood Control Improvement Study, a hydrologic review was performed. Based on this review, it was recommended that the Draft Pinnacle Peak South (PPS) Area Drainage Master Study (ADMS) Hydrology and Hydraulics (H&H) Report model prepared by TY Lin International (TY Lin) in 2012, be used as a base model for the hydrology of the Reata Wash Flood Control Improvement Study. The following modifications were recommended to the Draft PPS ADMS hydrologic model for use in the Reata Wash Flood Control Improvement Study:

- As stated in the Draft PPS ADMS H&H Report, the hydrologic model was developed for future land
 use conditions and included future flood control facilities, such as retention/detention basins utilized
 to attenuate the peak discharge and reduce the storm water runoff volume. For the Reata Wash
 Flood Control Improvement Study, land use categories and boundaries within the model limits will be
 checked against project aerials (2014), and features not currently existing or under construction will
 be removed from the hydrologic model.
- The watershed boundaries will be extended to include the Reata Wash Corridor from Pinnacle Peak Road south to Bell Road. This area is approximately 1.6 square miles of the 2.0 square mile Reata Wash major basin (see Figure 1–1).

The hydrologic modeling as originally prepared for the PPS ADMS, was completed using the Corps of Engineer's Hydrologic Engineering Center's HEC-1 modeling program version 4.1 (see Figure 1–1 for HEC-1 Study Area location).

1.5 Study Results

The study resulted in the development of rainfall-runoff models for the 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year events of 24-hour duration for the watershed. This memorandum documents the results of these models for the 19.58 square mile watershed upstream of Bell Road.

Contract No. 2014-168-COS

2. Mapping and Survey Information

2.1 Field Survey and Mapping Information¹

Topographic Mapping was provided by the Flood Control District of Maricopa County (FCDMC). Aerial photography was taken in 2007 and processed in 2010. Supplementary ground survey was conducted in certain areas in the watershed of special concern with respect to storm water conveyance. These areas included channels that were constructed after 2007. The details/results of aerial mapping and supplementary survey used for the project are provided in the PPS ADMS Data Collection Report.

3. Hydrology

3.1 Method Description

The hydrologic modeling from the PPS ADMS was used as a base for the development of the Reata Wash Flood Control Improvement Study hydrology. The hydrologic model for the watershed was completed using the Corps of Engineer's Hydrologic Engineering Center's HEC-1 modeling program version 4.1 (see Figure 1–1 for HEC-1 Study Area location). The HEC-1 input data was generated from topographic mapping, aerial photographs, Environmental Systems Research Institute (ESRI) ArcMap v10.2, and the FCDMC's Drainage Design Management System for Windows (DDMSW) version 4.8.2. The 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year, 24-hour storm events were modeled. The S-graph method was selected as the unit hydrograph and Green-Ampt was used to calculate rainfall losses.

3.2 Flow Splits

No additional flow splits were modeled.

3.3 Diversion/Storage²

The Echo Ridge subdivision, located in the northern portion of the watershed, provides some on-site retention within the developed community. Though these retention areas are relatively small, they have been included within the HEC-1 modeling to account for development storage. At the outfall of the Echo Ridge subdivision, flow passes through two existing detention basins which are connected in series. The site with these two regional basins is owned by the City and is designated as Troon North Park. The existing basin (Troon North Park) has been redesigned to enlarge the basin's storage capacity, as well as to add recreation amenities. The second basin (FCD#1) will remain in its current configuration. The culvert connection between the two basins has an equalizing discharge greater than that of the culvert/spillway outlet of FCD#1. Therefore, the two basins were modeled together with a single stage-storage-discharge relationship having an outfall at concentration point CP6 (see tables in Draft PPS ADMS H&H Report).

A regional sedimentation basin is located at the intersection of Happy Valley Road and Alameda Road, noted as concentration point CP20 (FCD#2). This basin was modeled with a stage-storage-discharge relationship (see tables in Draft PPS ADMS H&H Report) and discharges flow into a downstream wash which runs west adjacent to Happy Valley Road.

¹ Pinnacle Peak South Area Drainage Master Study, Draft Hydrology and Hydraulics Report Volume 1, July 26.2013. Pg. 5.

² Pinnacle Peak South Area Drainage Master Study, Draft Hydrology and Hydraulics Report Volume 1, July 26.2013. Pg. 7-8.

Reata Wash Flood Control Improvement Study used the existing retention basins in the HEC-1 model with the exception of an as-yet unbuilt regional basin (i.e., future conditions) located east of Alma School Road just north of Pinnacle Vista Dr. (HEC-1 Model ID DET6). Table 3–1 is a summary of modeled retention/detention basins. As noted above, detailed information regarding each basin is included in the Draft PPS ADMS H&H Report.

		Table 3–1 Modeled	Retention/Detention Basins
HEC-1 Model ID Sub-Area		Retention/Detention Basin Designation	Note
RET1	01	LP002 LPC001	Aggregate from a series of small (2) upstream Basins. Very small and do not show up well on Topo.
RET2 02		LPC005 LPC006 LPC007 LPC009 LPC012 LPC013 LPC014 LPC13i	Aggregate from a series of small (8) upstream Basins. Very small and do not show up well on Topo. Upstream of road embankments in existing development.
RET3	03	LP022 LP023	Retention basin at basin outlet (Sub Area 3) upstream of roadway embankment.
RET4	04		Aggregate from a series of small (4) upstream Basins. Small but visible on topo through an existing development.
RET5	05	LP016	Unknown Location.
RET6	06	LPC024	Single basin visible on topo and aerial images.
RET7	07	LPC032	Small single basin within existing development. Upstream of road crossing.
DET20	20		Large area upstream of road crossing.

3.4 Parameter Estimation

3.4.1 Drainage Area Boundaries

The study area watershed and hydrologic subbasins are shown on Exhibit C. The watershed area is approximately 19.58 square miles, with 8.00 square miles contributing to the apex of the Reata Pass Alluvial Fan (Federal Emergency Management Agency (FEMA) Fan #2). The ultimate outfall for the study area is at the southern boundary of the watershed at Reata Wash and Bell Road.

3.4.2 Watershed Work Maps

The following maps have been prepared to document the HEC-1 modeling input and results. These exhibits include the original Draft PPS ADMS watershed as well as the additional sub-basins added for the Reata Wash Corridor:

Exhibit A - Soil Type Map – prepared from the FCDMC's soils information - this exhibit shows the soils located within each sub-basin.

Exhibit B - Land Use Map — prepared from the City's land use and zoning information. For areas outside of the Draft PPS ADMS hydrologic modeling area, new land use codes were converted to the applicable FCDMC's codes within each sub-basin.

Exhibit C - Watershed Map – prepared using the topographic data provided by the FCDMC as a background. This map depicts the overall watershed boundary, sub-basin drainage boundaries, sub-basin identification nomenclature, longest flow path lengths and slopes, the length from the sub-basin centroid to the downstream concentration point along the longest flow path from a point perpendicular to the centroid, and the routing lengths. Nomenclature for the Reata Wash corridor hydrologic basins is consistent with the Draft PPS ADMS hydrologic modeling.

3.4.3 Gage Data

There have been several rain and stream gages (see Table 3–2 and Table 3–3) installed within the project watershed over the past 23 years. The stream and rainfall gages located within the watershed have a relatively short period of record. However, the following events have been identified from FCDMC telemetry data.

	Table 3–2 Rainfall Data									
Gage	Installed (Date)	Location	Storm (Date)	Largest Storm (inches)	Most Intense Duration (inches/time					
4585	5/15/01	1.6 miles east of Pima Rd. on Pinnacle Peak Rd.	9/08/14 1/27/08 9/3/06 7/31/05 3/4/04	2.28 1.97 1.02 1.65 2.20	2.28/24-hr 0.25/1-hr 0.98/17-min 1.53/1-hr 0.59/1-hr					
4935	8/26/93	0.5 miles south of Dynamite Blvd. and 112 th St.	11/15/93 9/8/14 8/29/96 8/29/96	No Data Available	2.64/24-hrs 2.20/6-hrs 1.54/1-hr 0.91/15-min					

Table 3–3 Stream Gages									
Gage	Installed (Date)	Location	Largest Event (Date)	Peak Stage (feet)	Peak Q (cfs)				
4588	5/15/01	1.6 miles east of Pima Rd. on Pinnacle Peak Rd.	9/08/14	2.08	1,197				
4938	10/2/01	0.5 miles south of Dynamite Blvd. and 112 th St.	9/08/14	5.70	n/a				

Abbreviations:

cfs - cubic feet per second

3.4.4 Statistical Parameters

The rain and stream gages located within this HEC-1 study area are of limited use due to their short history since installation. Therefore, the methods used in the Water Resources Council Bulletin 17B were

not used. Instead, the precipitation was predicted for the 10-year and 100-year, 24-hour storms using National Ocean and Atmospheric Administration (NOAA) Atlas 14 generated isopluvial maps. The FCDMC's DDMSW program uses Geographic Information System (GIS) to spatially average the NOAA Atlas 14 data to arrive at a representative point rainfall for the watershed.

3.4.5 Precipitation

NOAA Atlas 14, Precipitation Frequency Atlas of the Western United States, Arizona was utilized to obtain isopluvial maps evaluated to determine the values associated with the 10-year and 100-year, 24-hour rainfall events. Within the DDMSW program a shapefile of each the watershed was imported delineating the outer boundary of the project watershed. The FCDMC's program spatially averaged the isopluvials within the study boundary resulting in an area average rainfall. Table 3–4 summarizes these results.

Table 3–4 NOAA Atlas 14 Rainfall Data (in inches)										
Duration	2-year	5-year	10-year	25-year	50-year	100-yea				
5 Minute	0.300	0.404	0.482	0.585	0.663	0.741				
10 Minute	0.456	0.615	0.734	0.890	1.008	1.127				
15 Minute	0.566	0.762	0.910	1.104	1.250	1.397				
30 Minute	0.762	1.026	1.225	1.487	1.684	1.882				
1 Hour	0.943	1.270	1.516	1.840	2.084	2.329				
2 Hour	1.079	1.431	1.700	2.061	2.334	2.614				
3 Hour	1.149	1.497	1.773	2.156	2.458	2.771				
6 Hour	1,362	1.730	2.024	2.425	2.737	3.060				
12 Hour	1.618	2.035	2.365	2.812	3.155	3.508				
24 Hour	1.986	2.582	3.062	3.740	4.283	4.857				

3.4.6 Sub-basin Parameters

The following sections describe how the sub-basin parameters were determined. DDMSW output tables can be found in Appendix A. Development of sub-basin parameters for the Reata Wash corridor are consistent with the Draft PPS ADMS hydrologic modeling. For ease of comparison the following sections were taken directly from the Draft PPS ADMS H&H Report with small changes to reflect the inclusion of the Reata Wash corridor sub-basins.

Rainfall Losses

Rainfall infiltration losses were calculated using DDMSW. The rainfall loss method used was Green and Ampt. Soil parameters were taken from the Natural Resources Conservation Service (NRCS) soil surveys. The DDMSW model partially bases rainfall losses on both soils and land use data. The appendices include output tables for soils and land use data that documents parameter estimation for each sub-basin.

Surface retention losses include all rainfall losses not associated with infiltration. These losses include depression storage, interception and evaporation. For this study, these losses are based upon land use and surface cover. The FCDMC has a prepared table in their Drainage Design Manual for Maricopa County,

Arizona, Volume I, Hydrology covering land use and surface retention loss. These values, for the initial abstraction (IA), were applied to the sub-basins in the DDMSW program.

The percent impervious input data is based upon a combination of soils and land use data. The mountainous areas include areas of rock outcrop. However, these areas are not hydraulically connected. Therefore, the percent effective for the rock outcropping was set to a minimum value of 1 percent. For the other areas representative values are described within the FCDMC Drainage Design Manual and are included in the default parameters of the DDMSW program.

Soils

Soils data for the current study was taken from the NRCS soil survey, found within Book 645, entitled <u>Aquila-Carefree Area, Arizona</u>. Using soil GIS shapefiles provided by the FCDMC and the delineated sub-basin drainage boundaries, soil data was clipped for each sub-basin and imported to DDMSW. The soils data can be found in Appendix C and on Exhibit A.

Land Use/Vegetative Cover

Land use was assigned based upon the shapefiles in the City's GIS zoning database. These boundaries were inspected against the aerial photographs to confirm that existing development corresponded with the GIS zoning database. The zoning also included areas where undeveloped and partially developed conditions exist. The land use information was developed for individual sub-basins and then imported into DDMSW. Vegetative cover for sample areas in the watershed were evaluated by reviewing tree/bush cover. This included numbers of trees and estimated tree canopy diameter. A reduction factor was applied to the effective blockage of tree canopies. The Land Use data can be found in Appendix C and on Exhibit B.

Unit Hydrograph

The S-Graph method (Phoenix Mountain) was selected as the unit hydrograph for this study. The watershed that contributes to the Reata Pass Fan has a contributing drainage area of 8 square miles and the full contributing watershed is 19.58 square miles in area at Reata Wash and Bell Road. The watershed includes multiple sub-basins which vary in size from a fraction of a square mile up to approximately 1.5 square miles.

Lag

Basin lag was estimated from watershed characteristics using the following equation.

$$Lag = C\{(L^*L_{ca})/S^{0.5}\}^m$$

where L = length of the longest watercourse in miles

Lca = length along the watercourse to a point opposite the centroid in miles

S = watercourse slope in feet per mile

C = 24Kn and m = 0.38 (US Army Corps of Engineers (USACE), 1982)

or C = 26Kn and m = 0.33 (United States Bureau of Reclamations (USBR), 1987)

and Kn = variable dependent upon the selection of S-Graph type and Land Use

Routing Steps (NSTPS)

Initially, the number of routing steps for each route was set to one within the HEC-1 model. The model was run and discharges determined for each route. The HEC-1 cross-section data along with the discharge

was then modeled in FlowMaster to obtain estimated velocities. A new number of routing steps for each channel route was then estimated using the following equation:

NSTPS = [Length of Route (ft) / (Velocity_{avg} (ft/sec)*60 seconds / minute)] / NMIN

The routing lengths were measured in GIS, the velocities calculated within the FlowMaster worksheets, and the NMIN (HEC-1 model variable) was held constant at 3 minutes. Once new NSTPS were calculated, these values were replaced within the model and it was rerun. The process was repeated for as many iterations as was necessary to minimize fluctuation in the NSTPS. If the NSTPS value continually fluctuated between two numbers, the lower value was used. Routing information can be found in Appendix A.

3.5 Problems Encountered During the Study

3.5.1 Special Problems and Solutions

Directly south of the Reata Pass Fan Apex, Dobson Wash is capable of splitting away from the main channel of Reata Wash. In order to be compliant with agency environmental requirements concerning Dobson Wash, flood flows will be released at the Reata Pass Fan Apex. It is anticipated the Clean Water Act, Section 404 Permit will require the release of flows. For the purposes of this study, it was preliminarily assumed that a split flow of up to 2,000 cubic feet per second (100-year, 24-hour rainfall event) will be released from the main channel of Reata Wash to Dobson Wash. The final split flow release rate will be determined after further study, as well as consideration of Federal and State environmental requirements, as well as feedback from FEMA. Flood flow will otherwise be contained within the Reata Wash corridor south to the Reach 11, Dike 4 East basins behind the CAP canal. To model the split flow release, a diversion record was included in the HEC-1 models at this location and a rating table was developed to allow a maximum of 2,000 cubic feet per second. No other special problems were encountered. See Figure 3–1.

3.5.2 Modeling Warning and Error Messages

There were no error messages encountered in the Reata Wash Flood Control Improvement Study hydrologic modeling. This was consistent with the Draft PPS hydrologic models. A single warning was included in the model run. The warning: Excess at ponding less than zero for period. Excess set to zero. This warning indicates that for a specified period the rainfall excess was calculated to be less than zero and since it cannot be negative it was set to zero. This warning does not negatively or significantly affect the hydrologic model results.

3.6 Calibration

Stream gage data within the watershed are insufficient to extract for a direct comparison. As with the Draft PPS Hydrologic modeling, calibration of the current hydrologic model was conducted by comparison of the study results to Regional Regression equations, as well as two local independent studies. These studies are:

- Hydrologic Analysis of Scottsdale Alluvial Fans 1-6 was prepared for the FCDMC in August of 1988.
- Refinement of Methodology: Alluvial Fan Flood Hazard Identification & Mitigation Methods was prepared for the FCDMC in August of 2010.

The following table summarizes the results of these studies.

				M	ethod		
		Concentration	HEC-1	TR-55	Reg	ional Regres	ssion
Study	Year	Point	100-yr, 24-hr Peak Discharge (cfs)	Discharge (cfs)	Upper Limit (cfs)	Q100 (cfs)	Lower Limit (cfs)
Cella Barr (for FEMA)	1988	Reata Fan Apex FEMA Fan #2 (CP51)	14,867	8,986	13,170	7,934(2)	2,698
JE Fuller (for FCDMC)	2004	Reata Fan Apex FEMA Fan #2 (C60)	11,913	No Data Available	No Data Available	No Data Available	No Data Available
TY Lin/JE Fuller	2016	Reata Fan Apex FEMA Fan #2 (CP22)	13,015	No Data Available	9,355	6,730 ⁽¹⁾	4,105

Notes:

Abbreviations:

cfs - cubic feet per second

Estimation based on FCDMC effective Hydrology Manual (Table 8.2) Arizona Region 12 – Standard Error (39%);
 Standard Error (66%) – Reference: "Methods for Estimating the Magnitude and Frequency of Floods in Arizona, ADOT-RS-15(121)," Arizona Department of Transportation (ADOT), September 1978.

3.7 Final Results

3.7.1 Hydrologic Analysis Results

Table 3–6 and Table 3–7 summarize the output from the 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year, 24-hour HEC-1 models. The HEC-1 model output data for the 100-year, 24-hour storm event can be found in Appendix B.

				Peak Dischar			
Subbasin	Area (square miles)	2-year (cfs)	5-year (cfs)	10-year (cfs)	25-year (cfs)	50-year (cfs)	100-yea (cfs)
01	0.160	105	162	206	268	316	366
02	0.140	122	178	222	284	333	384
03	0.150	130	194	243	312	367	424
04	0.120	105	157	198	255	300	347
05	0.140	143	200	246	311	362	416
06	0.180	161	231	286	364	425	489
07	0.120	108	156	194	247	289	333
08	0.130	113	167	208	267	313	361
09	0.110	87	133	169	219	259	300
10	0.460	339	507	640	824	969	1,120
11	0.170	133	204	260	336	397	460
12	0.300	201	307	390	507	599	695
13	0.260	145	230	301	399	477	558
14	0.150	116	177	225	291	343	397
15	0.700	462	712	908	1,182	1,397	1,621
16	0.520	317	489	626	818	968	1,125
17	0.320	300	435	543	691	808	931
18	0.140	108	163	206	266	312	361
19	0.150	127	190	238	306	360	416
20	0.260	196	301	383	498	588	682
21	0.130	109	166	210	271	319	369
22	0.220	120	191	248	327	389	453
23	0,280	230	325	400	503	585	671
24	0.380	182	293	386	518	622	730
25	0.270	150	239	312	413	493	576
26	0.060	47	73	94	122	145	168
27	0.110	75	119	153	199	236	275
28	0.170	124	189	240	310	364	422
29	0.150	118	180	229	296	349	404
30	0.390	155	264	357	484	586	692
31	0.500	207	363	492	675	818	968
32	0.440	235	388	512	683	820	963
33	0.180	130	202	258	336	397	460
34	0.460	296	492	642	849	1,014	1,186

	Area	A STATE OF THE PARTY OF THE PAR	5-year	Peak Dischar 10-year	25-year	50	100 400
Subbasin	(square miles)	2-year (cfs)	(cfs)	(cfs)	(cfs)	50-year (cfs)	100-year (cfs)
35	0.410	245	421	556	742	889	1,043
37	0.630	319	555	748	1,013	1,222	1,439
38	0.060	40	68	90	119	142	166
39	0.150	87	155	209	283	341	401
40	0.150	86	152	203	272	327	385
41	0.350	124	260	363	506	623	745
42	0.320	106	222	310	440	544	651
43	0.140	24	88	136	200	252	305
44	0.130	8	56	99	157	201	248
45	0.160	9	40	89	155	207	259
46	0.170	94	170	228	307	370	436
47	0.550	197	349	477	658	800	951
48	1.570	402	745	1,032	1,456	1,792	2,150
49	0.430	76	203	300	430	540	660
50	0.140	28	65	110	170	217	265
51	0.720	177	381	534	755	941	1,135
52	0.600	240	431	590	814	989	1,174
53	0.700	143	329	466	681	856	1,037
54	0.490	127	273	382	547	679	818
55	0.340	154	275	373	513	623	737
56	1.230	321	621	861	1,225	1,509	1,809
57	0.080	2	42	77	123	158	194
58	0.110	90	140	179	233	275	319
59	0.050	26	51	70	95	115	136
60	0.180	31	79	134	209	266	326
61	0.120	102	147	183	233	272	313
62	0.120	72	133	179	240	288	338
63	0.390	120	217	321	460	569	683
64	0.640	179	383	540	751	928	1,119

Abbreviations: cfs – cubic feet per second

Concentration	Area	2-year	5-year	10-year	25-year	50-year	100-year
Points	(sq. mi.)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
CP2	0.300	131	250	374	501	602	703
CP5	0.440	218	343	467	719	875	1,021
CP6	1,130	557	909	1,287	1,843	2,286	2,713
CP7	0.360	207	353	482	656	779	939
CP10	1.900	861	1,364	1,851	2,620	3,226	3,914
CP12	0.460	311	478	610	793	937	1,086
CP13	2.620	1,194	1,927	2,586	3,588	4,392	5,282
CP16	3.140	1,301	2,191	2,978	4,139	5,052	6,071
CP19	2.050	994	1,811	2,631	3,388	4,055	4,731
CP20	1.380	882	1,404	1,805	2,363	2,805	3,262
CP21	0.280	216	332	422	547	645	748
CP22	8.000	2,340	3,861	5,393	7,815	10,096	13,015
CP23	0.600	431	649	817	1,057	1,242	1,513
CP24	3.640	1,120	1,854	2,625	4,049	5,245	6,864
CP24A	4.240	1,316	2,220	3,133	4,701	6,154	8,015
CP25	3.260	1,404	2,459	3,569	4,858	5,848	6,863
CP26	1.900	947	1,849	2,393	3,155	3,756	4,387
CP28	0.450	261	423	552	732	873	1,038
CP31	0.940	378	677	921	1,271	1,548	1,836
CP34	0.870	470	822	1,108	1,471	1,757	2,057
CP41	2.390	566	1,196	1,814	2,626	3,249	3,950
CP42	1.790	585	1,130	1,613	2,273	2,784	3,352
CP45	0.250	9	40	89	155	207	264
CP46	0.720	266	478	654	903	1,097	1,302
CP49	1.910	353	726	1,054	1,528	1,902	2,337
CP50	2,910	396	874	1,301	1,999	2,547	3,158
CP53	1.300	279	600	873	1,291	1,619	2,027
CP54	2.140	373	804	1,165	1,753	2,229	2,841
CP54A	3,440	631	1,372	1,984	2,996	3,795	4,812
CP56	1.570	438	839	1,160	1,644	2,022	2,423
CP58	8.110	1,877	3,102	4,294	6,191	7,932	10,859
CP59	9.090	1,911	3,164	4,387	6,256	8,025	11,274
CP59A	9.240	1,905	3,166	4,375	6,228	8,039	11,214
CP60	9.580	1,779	3,065	4,250	6,102	7,837	10,990
CP62	12.210	1,891	3,434	4,819	6,952	8,992	12,119
CP63	12.590	1,751	3,228	4,618	6,784	8,766	11,652
CP64	19.580	2,027	4,149	6,193	9,499	12,370	15,618

Abbreviations:

cfs - cubic feet per second

3.7.2 Verification of Results

The HEC-1 watershed concentrates at the Reata Pass Fan Apex (CP22). Therefore, it is a key location to compare runoff values. The model results shown in Table 3–7 fall in between the two previous studies, lower than the Cella Barr study (1988, completed for FEMA) and slightly higher but close to the values from the JE Fuller study (2010, completed for FCDMC). Figure 3–2 is a comparison between the HEC-1 100-year peak discharges for each subbasin and the USGS regional regression discharges for the same subbasins.

4. Conclusion

Based on the findings presented in the Hydrologic Review Memorandum, a project specific hydrologic model was developed for the Reata Wash Flood Control Improvement Study. The Draft PPS ADMS H&H Report (hydrologic modeling) was advanced as the most appropriate model to meet study objectives.

The following adjustments were made to the Draft PPS ADMS HEC-1 model for use in the Reata Wash Flood Control Improvement Study;

- As stated in the Draft PPS ADMS H&H Report, the hydrologic model was developed for future land
 use conditions and included future flood control facilities such as retention/detention basins utilized
 to attenuate the peak discharge and reduce the storm water runoff volume. Land use categories and
 boundaries within the model limits will be checked against project aerials (2014) and flood control
 facilities not currently existing or under construction will be removed from the hydrologic model.
- The watershed boundaries were extended to include the Reata Wash Corridor from Pinnacle Peak Road south to Bell Road. This area is approximately 1.6 square miles.

• A full review of the input parameters was conducted as part of the Reata Wash Flood Control Improvement Study Quality Control program.

Based on the modifications listed above, a FEMA compliant hydrologic model was prepared for the Reata Wash Flood Control Improvement Study that is consistent with recent hydrologic models with in the watershed and updated with current FCDMC hydrologic modeling standards.

Appendix A DDMSW Tables

Page 1 3/23/2016

Storage Basin ID:	DET20											
Spillway Characteristics (SS)			1.	2	3	4	<u>5</u>	6	Z	8	9	10
Spillway Crest Elevation:	-NA-	Volume (ac-ft)			0.6	3.2	7.1	7.1				
Spillway Length:	-NA-	Discharge (cfs)	0	220	443	664	886	10,000	.0	0	0	0
Discharge Coefficient: Weir Coefficient:	-NA- -NA-	Elevation (ft)	2,552.0	2,554.0	2,556.0	2,558.0	2,560.0	2,560.1	19	0-1	-	1,8
Low-Level Outlet (SL)			11	12	<u>13</u>	14.	<u>15</u>	16	<u>17</u>	18	<u>19</u>	20
Centerline Elevation:	-NA-	Volume (ac-ft)	14	-	(-)	- (4)	-	1	-	- E	-	-
Cross-Section Area:	-NA-	Discharge (cfs)	0	0	0	0	0	0	0	0	0	0
Discharge Coefficient:	-NA-	Elevation (ft)	14	-	ψ.	139		14		e e b	-	
Orifice Equation Exponent: Top of Dam Overflow (ST)	-NA-		2 Yr	5 Yr	10 Yr	25 Yr	50 Yr	100 Yr	Data imported fi	om HEC 1 fil	o ALL DAT	
	NIA	B						-	02/25/2015	UIII (1EC-1.1II	e. ALL.DAT	
Elevation Top of Dam:	-NA-	Peak Volume (ac-ft)	3.89	7.14	7.14	7.14	7.14	7.14	Salahas 16			
Length of Dam:	-NA-	Peak Stage (ft)	2,558.35	2,560.01	2,560.01	2,560.02	2,560.02	2,560.03				
Discharge Coefficient: Weir Coefficient:	-NA- -NA-	Peak Discharge (cfs)	703.00	1,404.00	1,805.00	2,363,00	2,805,00	3,262.00				
Storage Basin ID: Spillway Characteristics (SS)	RET1		1	2	3	4	<u>5</u>	<u>6</u>	<u>z</u>	<u>8</u>	<u>9</u>	10
Spillway Crest Elevation:	-NA-	Volume (ac-ft)		-	-	0.1	0.3	0.3				
Spillway Length:	-NA-	Discharge (cfs)	0	-5	15	30	90	1,000	0	0	0	0
Discharge Coefficient: Weir Coefficient:	-NA- -NA-	Elevation (ft)	40	2	4	A	Δ.	-		-	229	1.2
Low-Level Outlet (SL)			11	12	<u>13</u>	14.	15	16	17	18	<u>19</u>	20
Centerline Elevation:	-NA-	Volume (ac-ft)	74	2	-	19	_) <u>i</u>		-	. = 0	-
Cross-Section Area:	-NA-	Discharge (cfs)	0	0	0	0	0	0	0	0	0	0
Discharge Coefficient:	-NA-	Elevation (ft)	ų.	-	-	4.5) é	Ψ.	-	-	-
Orifice Equation Exponent: Top of Dam Overflow (ST)	-NA-		2 Yr	5 Yr	<u>10 Yr</u>	25 Yr	50 Yr	100 Yr	Data imported fi	om HEC-1 fil	e: ALL.DAT	
Elevation Top of Dam:	-NA-	Peak Volume (ac-ft)	0.25	0.25	0.25	0.25	0.25	0.25	02/25/2015			
Length of Dam:	-NA-	Peak Stage (ft)	0.00	0.00	0.00	0.00	0.00	0.00				
Discharge Coefficient:	-NA-	Peak Discharge (cfs)	105.00	162.00	206.00	268.00	316.00	366.00				
Weir Coefficient:	-NA-				22.2.2.2.2							

Page 2 3/23/2016

Storage Basin ID:	RET2											
Spillway Characteristics (SS)			1	2	3	4	<u>5</u>	<u>6</u>	Z	8	9	10
Spillway Crest Elevation:	-NA-	Volume (ac-ft)		-	0.1	0.4	1.1	2.5	3.0	3.0		
Spillway Length:	-NA-	Discharge (cfs)	0	6	18	30	38	45	51	1,000	0	0
Discharge Coefficient: Weir Coefficient:	-NA- -NA-	Elevation (ft)	1,000.0	1,001.0	1,002.0	1,003.0	1,004.0	1,005.0	1,006.0	1,006.1		14,
Low-Level Outlet (SL)			11	12	13	14.	15	16	17	18	19	20
Centerline Elevation:	-NA-	Volume (ac-ft)	1	-	, -	- 9	-	1	_	-	-	-
Cross-Section Area:	-NA-	Discharge (cfs)	0	0	0	0	0	0	0	0	0	0
Discharge Coefficient:	-NA-	Elevation (ft)	14	(a)	4	1.9	+	ı÷		-		-
Orifice Equation Exponent:	-NA-		932	205	Adam.		64.00		E. 12		0.000.000	
Top of Dam Overflow (ST)			2 Yr	5 Yr	10 Yr	25 Yr	50 Yr	100 Yr	Data imported 02/25/2015	from HEC-1 fil	e: ALL.DAT	
Elevation Top of Dam:	-NA-	Peak Volume (ac-ft)	1.93	2.97	2.97	2.97	2.97	2.97	0212312013			
Length of Dam:	-NA-	Peak Stage (ft)	1,004.57	1,006.01	1,006.02	1,006.02	1,006.03	1,006.04				
Discharge Coefficient:	-NA-	Peak Discharge (cfs)	42.00	106.00	222,00	284.00	333.00	384.00				
Weir Coefficient:	-NA-											
Storage Basin ID:	RET3											
Spillway Characteristics (SS)			1	2	3	4	<u>5</u>	6	Z	8	9	10
Spillway Crest Elevation:	-NA-	Volume (ac-ft)		-	0.2	0.6	1.2	<u>6</u> 1,3	1.4	1.4		
Spillway Length:	-NA-	Discharge (cfs)	0	15	48	80	97	113	127	1,000	0	0
Discharge Coefficient: Weir Coefficient:	-NA- -NA-	Elevation (ft)	1,000.0	1,001.0	1,002.0	1,003.0	1,004.0	1,005.0	1,006.0	1,006.1	J.C.	- 2
Low-Level Outlet (SL)			11	12	13	14.	<u>15</u>	16	17	18	19	20
Centerline Elevation:	-NA-	Volume (ac-ft)	74	2	-	13	_	1-		-		-
Cross-Section Area:	-NA-	Discharge (cfs)	0	0	0	0	0	0	0	0	0	0
Discharge Coefficient:	-NA-	Elevation (ft)	₹.	-	e			14	9	-	-	-
Orifice Equation Exponent:	-NA-		Alon	NAME OF THE PARTY	20.24	22.00	20.00	1922 44	with a first transfer of the state of the st	ATT TO LEAD OF	and the state of the state of	
Top of Dam Overflow (ST)			<u>2 Yr</u>	<u>5 Yr</u>	<u>10 Yr</u>	25 Yr	50 Yr	100 Yr	ACTIVIDATE OF A STORY WINE	from HEC-1 fil	e: ALL.DAT	
Elevation Top of Dam:	-NA-	Peak Volume (ac-ft)	0.93	1.36	1.36	1.36	1.36	1.36	02/25/2015			
Length of Dam:	-NA-	Peak Stage (ft)	1,003.53	1,006.01	1,006.01	1,006.02	1,006.03	1,006.03				
Discharge Coefficient:	-NA-	Peak Discharge (cfs)	89.00	192.00	243.00	312.00	367.00	424.00				
Weir Coefficient:	-NA-											

Page 3 3/23/2016

Storage Basin ID:	RET4											
Spillway Characteristics (SS)			1	2	3	4	<u>5</u>	<u>6</u>	Z	8	9	10
Spillway Crest Elevation:	-NA-	Volume (ac-ft)		0.2	0.5	0.9	1.3	1.4	1.5	1.5		
Spillway Length:	-NA-	Discharge (cfs)	Ó	13	20	26	31	35	38	1,000	0)
Discharge Coefficient: Weir Coefficient:	-NA- -NA-	Elevation (ft)	1,000.0	1,001.0	1,002.0	1,003.0	1,004.0	1,005.0	1,006.0	1,006.1		
Low-Level Outlet (SL)			11	12	13	14.	<u>15</u>	16	17	18	19	20
Centerline Elevation:	-NA-	Volume (ac-ft)	19	-	(-)	19	-	-	-		-	
Cross-Section Area:	-NA-	Discharge (cfs)	0	0	0	0	0	0	0	0	0	j
Discharge Coefficient:	-NA-	Elevation (ft)	14	-	4	1.39	-	÷	-	e e	-	
Orifice Equation Exponent:	-NA-		2 Yr	5 Yr	10 Yr	25 Yr	50 Yr	100 Yr	Data issuastas	from HEC-1 fil	- ALL DAT	
Top of Dam Overflow (ST)	21.0				7.7	200			02/25/2015	I IIOIII NEC-1 III	e. ALL.DAT	
Elevation Top of Dam:	-NA-	Peak Volume (ac-ft)	1.51	1.51	1.51	1.51	1.51	1.51	42.20.20.0			
Length of Dam:	-NA-	Peak Stage (ft)	1,006.00	1,006.01	1,006.02	1,006.02	1,006.03	1,006.03				
Discharge Coefficient:	-NA-	Peak Discharge (cfs)	53.00	157.00	198.00	255,00	300.00	347.00				
Weir Coefficient:	-NA-											
Storage Basin ID:	RET5											
Spillway Characteristics (SS)			1	2	3	4	<u>5</u>	6	Z	8	9	10
Spillway Crest Elevation:	-NA-	Volume (ac-ft)		0.4	1.5	1.5						
Spillway Length:	-NA-	Discharge (cfs)	0	0	185	1,000	0	.0	0	0	0	
Discharge Coefficient: Weir Coefficient:	-NA- -NA-	Elevation (ft)	1,000.0	1,001.0	1,002.0	1,002.1	0			-	-0-9	
Low-Level Outlet (SL)			11	12	13	14.	15	16	17	18	<u>19</u>	20
Centerline Elevation:	-NA-	Volume (ac-ft)	74.	1 2	-	r=	/ -	12		-1	. 20	
Cross-Section Area:	-NA-	Discharge (cfs)	0	0	0	0	0	0	0	0	0	j.
Discharge Coefficient:	-NA-	Elevation (ft)	3 - 2	-	e,	1.	-	14		-	167	- 2
Orifice Equation Exponent:	-NA-		0.16	P34	4036	0E \/-	50.37	400.36	RICKS	i de la compansión de l	ALLDAT	
Top of Dam Overflow (ST)	4171		<u>2 Yr</u>	<u>5 Yr</u>	<u>10 Yr</u>	25 Yr	<u>50 Yr</u>	100 Yr	02/25/2015	from HEC-1 fil	e: ALL.DAT	
Elevation Top of Dam:	-NA-	Peak Volume (ac-ft)	1.17	1.47	1.48	1.48	1.48	1.48	JEIEUI EU IU			
Length of Dam:	-NA-	Peak Stage (ft)	1,001,70	1,001.99	1,002.01	1,002.02	1,002.02	1,002.03				
Discharge Coefficient:	-NA-	Peak Discharge (cfs)	129.00	184.00	246.00	311.00	362.00	416.00				
Weir Coefficient:	-NA-											

Page 4 3/23/2016

Storage Basin ID:	RET6											
Spillway Characteristics (SS)			1	2	3	4	<u>5</u>	<u>6</u>	Z	8	9	10
Spillway Crest Elevation:	-NA-	Volume (ac-ft)		0.2	0.7	1.4	2.3	2.3				
Spillway Length:	-NA-	Discharge (cfs)	Ó	0	0	56	230	1,000	.0	0	0	0
Discharge Coefficient: Weir Coefficient:	-NA- -NA-	Elevation (ft)	1,000.0	1,001.0	1,002.0	1,003.0	1,004.0	1,004.1	180	G.		148
Low-Level Outlet (SL)			11	12	13	14.	<u>15</u>	16	<u>17</u>	18	19	20
Centerline Elevation:	-NA-	Volume (ac-ft)	5 -	-	(-)	- 9	-	1			e e	-
Cross-Section Area:	-NA-	Discharge (cfs)	0	0	0	0	0	0	0	0	0	0
Discharge Coefficient:	-NA-	Elevation (ft)	8 4 3	-	-	13	-	1	-	-	-	10
Orifice Equation Exponent:	-NA-		0.1/-	5 Yr	10.3%	25 Yr	F0.1/-	400.36	Bair tourising	UEO 1 6	ALL DAT	
Top of Dam Overflow (ST)			2 Yr		10 Yr	700	50 Yr	100 Yr	Data imported f 02/25/2015	rom HEC-1 TII	e: ALL.DAT	
Elevation Top of Dam:	-NA-	Peak Volume (ac-ft)	1.44	1.67	1.89	2.27	2.28	2.28	02/20/2010			
Length of Dam:	-NA-	Peak Stage (ft)	1,003.10	1,003.34	1,003.58	1,003.99	1,004.01	1,004.02				
Discharge Coefficient:	-NA-	Peak Discharge (cfs)	73.00	115.00	157.00	228,00	305.00	367,00				
Weir Coefficient:	-NA-											
Storage Basin ID:	RET7											
Spillway Characteristics (SS)			1	2	3	4	<u>5</u>	6	<u>Z</u>	8	9	10
Spillway Crest Elevation:	-NA-	Volume (ac-ft)			-	0.1	0.3	0.3				
Spillway Length:	-NA-	Discharge (cfs)	0	-11	22	46	63	1,000	0	0	0	0
Discharge Coefficient: Weir Coefficient:	-NA- -NA-	Elevation (ft)	1,000.0	1,001.0	1,002.0	1,003.0	1,004.0	1,004.1	8	-	-29	-2
Low-Level Outlet (SL)			11	12	<u>13</u>	14.	15	16	17	18	<u>19</u>	20
Centerline Elevation:	-NA-	Volume (ac-ft)	74	-	-	1-	-	1	-	-	.=0	-
Cross-Section Area:	-NA-	Discharge (cfs)	0	0	0	0	0	0	0	0	0	0
Discharge Coefficient:	-NA-	Elevation (ft)	4.	-	-	-	-	14	ý.	-	-	-
Orifice Equation Exponent:	-NA-					- Table 1980		2720				
Top of Dam Overflow (ST)			<u>2 Yr</u>	<u>5 Yr</u>	<u>10 Yr</u>	25 Yr	50 Yr	100 Yr	Data imported f	rom HEC-1 fil	e: ALL.DAT	
Elevation Top of Dam:	-NA-	Peak Volume (ac-ft)	0.34	0.34	0.34	0.34	0.34	0.34	02/25/2015			
Length of Dam:	-NA-	Peak Stage (ft)	1,004.00	1,004.01	1,004.01	1,004.02	1,004.02	1,004.03				
Discharge Coefficient:	-NA-	Peak Discharge (cfs)	108.00	156.00	194.00	247.00	289.00	333.00				
Weir Coefficient:	-NA-							1 2 . 33.				

ge 1						11007321	1001.0462	LINEAU MI	112710000							3/23/20
Route ID	LOBN	Chan N	ROB N	Length (ft)	Slope (ft/ft)	Max Elev (ft)		1.	2.	3.	4.	5.	6.	7.	8.	
ORMAL DEP	TH															
Vlajor Basin 0	1															
RT1	0.055	0.040	0.055	1,133.00	0.0228	-	X: Y:	2,670.00	24.00 2,668.00	37.00 2,666.00	134.00 2,664.00	193.00 2,664.00	240.00 2,668.00	276.00 2,672.00	303.00 2,676.00	
RT10	0.045	0.030	0.045	2,556.00	0.0248	8	X: Y:	2,490.00	13.00 2,488.00	28.00 2,486.00	48.00 2,484.00	57.00 2,484.00	66.00 2,486.00	83.00 2,488.00	97.00 2,490.00	
RT11	0.045	0.030	0.045	5,219.00	0.0245	121	X: Y:	2,560.00	19.00 2,558.00	82.00 2,558.00	107.00 2,556.00	117.00 2,556.00	144.00 2,558.00	160.00 2,560.00	181.00 2,562.00	
RT12A	0.050	0.035	0.050	2,242.00	0.0395		X: Y:	2,538.00	10.00 2,536.00	19.00 2,534.00	37.00 2,530.00	62.00 2,530.00	69.00 2,532.00	83.00 2,534.00	97.00 2,536.00	
RT12B	0.045	0.030	0.045	2,457.00	0.0241	03	X: Y:	2,490.00	13.00 2,488.00	28.00 2,486.00	48.00 2,484.00	57.00 2,484.00	66.00 2,486.00	83.00 2,488.00	97.00 2,490.00	
RT13	0.045	0.030	0.045	3,505.00	0.0273		X: Y:	2,440.00	4.00 2,438.00	9.00 2,436.00	52.00 2,434.00	108.00 2,434.00	116.00 2,436.00	129.00 2,438.00	175.00 2,440.00	
RT15	0.045	0.030	0.045	2,462.00	0.0285	1 151	X: Y:	2,600.00	4.00 2,598.00	8.00 2,596.00	12.00 2,594.00	57.00 2,594.00	65.00 2,596.00	69.00 2,598.00	117.00 2,600.00	
RT16	0.050	0.035	0.050	6,229.00	0.0295	151	X: Y:	2,260.00	53.00 2,258.00	192.00 2,256.00	205.00 2,254.00	214.00 2,254.00	229.00 2,256.00	353.00 2,258.00	491.00 2,260.00	
RT17	0.050	0.040	0.050	5,785.00	0.0365	150	X: Y:	2,350.00	4.00 2,346.00	22.00 2,342.00	43.00 2,339.00	50.00 2,339.00	64.00 2,342.00	80.00 2,346.00	93.00 2,350.00	
RT19	0.055	0.035	0.055	3,337.00	0.0347	8	X: Y:	2,508.00	13.00 2,504.00	31.00 2,498.00	46.00 2,496.00	82.00 2,496.00	100.00 2,500.00	123.00 2,504.00	155.00 2,508.00	
RT2	0.045	0.035	0.045	2,221.00	0.0218	0	X: Y:	2,634.00	39.00 2,633.00	53.00 2,632.00	61.00 2,629.80	71.00 2,629.80	74.00 2,632.00	84.00 2,636.00	106.00 2,636.40	

Page 2

7.50																3123120
Route ID	LOBN	Chan N	ROB N	Length (ft)	Slope (ft/ft)	Max Elev (ft)		1.	2.	3.	4.	5.	6.	7.	8.	
T21	0.045	0.030	0.045	2,993.00	0.0349		X: Y:	2,618.40	5.00 2,618.00	67.00 2,616.00	74.00 2,614.00	90.00 2,614.00	96.00 2,616.00	162.00 2,618.00	170.00 2,620.00	
T22A	0.055	0.040	0.055	1,543.40	0.0246	~	X: Y:	2,122.00	10.00 2,122.00	40.00 2,122.00	90.00 2,107.00	150.00 2,114.00		1,000.00 2,121.00		
T22B	0.055	0.040	0.055	1,802.90	0.0329	-	X: Y:	2,122.00	10.00 2,122.00	40.00 2,122.00	90.00 2,107.00	150.00 2,114.00	400.00 2,121.00	1,000.00 2,121.00	1,020.00 2,124.00	
T24A	0.050	0.030	0.050	1,545.00	0.0306	(4)	X: Y.	2,224.00	99.00 2,202.00	276.00 2,200.50	292.00 2,199.80	321.00 2,200.00	337.00 2,201.00	650.00 2,202.00	816.00 2,212.00	
T25	0.050	0.030	0.050	6,726.00	0.0267	18	X: Y:	2,330.00	74.00 2,308.00	105.00 2,306.00	368.00 2,304.00	415.00 2,304.00	422.00 2,306.00	428.00 2,308.00	520.00 2,340.00	
T26	0.050	0.035	0.050	1,139.00	0.0308	. 4	X; Y:	2,545.00	25.00 2,544.00	40.00 2,542.00	54.00 2,540.00	90.00 2,540.00	102.00 2,542.00	130.00 2,544.00	165.00 2,550.00	
T28	0.045	0.030	0.045	2,234.00	0.0368	, a	X: Y:	2,580.00	11.00 2,578.00	27.00 2,576.00	49.00 2,574.00	81.00 2,574.00	98.00 2,576.00	188.00 2,576.00	197.00 2,578.00	
T29	0.050	0.035	0.050	1,372.00	0.0345	- 6	X: Y:	2,688.00	2.00 2,686.00	41.00 2,684.00	48.00 2,683.20	56.00 2,683.20	58.00 2,684.00	75.00 2,686.00	101.00 2,690.00	
Т3	0.050	0.035	0.050	3,622.00	0.0228	÷	X: Y:	2,642.00	22.00 2,640.00	94.00 2,638.00	97.00 2,636.00	104.00 2,636.00	110.00 2,638.00	124.00 2,640.00	136.00 2,642.00	
Т31	0.055	0.035	0.055	599.00	0.0256	ιŞ	X: Y:	2,420,00	12.00 2,414.00	22.00 2,410.00	45.00 2,408.00	110.00 2,408.00	147,00 2,410.00	206.00 2,414.00	252.00 2,420.00	
T32	0.055	0.040	0.055	5,296.00	0.0517		X: Y:	2,460.00	25.00 2,444.00	69.00 2,442.00	77.00 2,438.00	89.00 2,438.00	94.00 2,440.00	112.00 2,450.00	127.00 2,460.00	
T33	0.050	0.035	0.050	3,766.00	0.0472	10.43	X: Y:	2,760.00	33.00 2,759.00	72.00 2,758.00	109.00 2,756.00	130.00 2,756.00	260.00 2,758.00	290.00 2,758.00	313.00 2,760.00	

Page 3

77 2																3/23/201
Route ID	LOBN	Chan N	ROB N	Length (ft)	Slope (ft/ft)	Max Elev (ft)		1.	2.	3.	4.	5.	6.	7.	8.	
RT34	0.055	0.040	0.055	3,084.00	0.0213	8	X: Y:	160.00 2,100.00	180.00 2,100.00	200.00 2,100.00	340.00 2,030.00	490.00 2,030.00	540.00 2,045.00	1,000.00 2,045.00		
RT35	0.055	0.040	0.055	2,848.00	0.0211	v	X: Y:	2,087.00	35.00 2,085.00	58.00 2,085.00	69.00 2,082.00	78.00 2,082.00	89.00 2,085.00	129.00 2,086.00	157.00 2,087.00	
RT37	0.050	0.040	0.050	4,195.00	0.0340	4-0	X: Y:	2,063.00	33.00 2,045.00	37.00 2,044.00	42.00 2,042.00	49.00 2,041.00	65.00 2,045.00	169.00 2,047.00	205.00 2,064.00	
RT4	0.055	0.040	0.055	2,467.00	0.0235	4-5	X: Y:	2,672.00	2.00 2,670.00	16.00 2,668.00	28.00 2,666.00	65.00 2,666.00	80.00 2,668.00	99.00 2,668.50	114.00 2,669.00	
RT41	0.050	0.035	0.050	2,454.00	0.0252	18	X: Y:	200.00 1,829.00	260,00 1,827.00	330.00 1,826.00	380.00 1,823.00	450.00 1,823.00	455.00 1,825.00	470.00 1,825.00	480.00 1,826.00	
RT42	0.050	0.035	0.050	4,042.00	0.0304		X; Y:	- 1,945.00	15.00 1,944.00	29.00 1,943.00	41.00 1,940.00	60.00 1,940.00	73.00 1,943.00	81.00 1,944.00	87.00 1,945.00	
RT45	0.050	0.035	0.050	2,935.00	0.0331	ň	X: Y:	1,924.00	10.00 1,920.00	39.00 1,919.00	49.00 1,918.00	50.00 1,918.00	53.00 1,920.00	60.00 1,923.00	65.00 1,924.00	
RT46	0.050	0.035	0.050	2,771.00	0.0424	. š	X: Y:	2,060.00	7.00 2,057.00	49.00 2,055.00	60.00 2,052.00	62.00 2,052.00	75.00 2,055.00	83.00 2,057.00	147.00 2,058.00	
RT48A	0.055	0.040	0.055	2,993.70	0.0470	¥	X: Y:	1,972.00	73.00 1,970.00	78.00 1,967.00	82.00 1,962.00	91.00 1,961.00	114.00 1,965.00	125.00 1,971.00	133.00 1,972.00	
RT48B	0.055	0.040	0.055	5,668.00	0.0422	15	X: Y:	1,972.00	73.00 1,970.00	78.00 1,967.00	82.00 1,962.00	91.00 1,961.00	114.00 1,965.00	125.00 1,971.00	133.00 1,972.00	
RT49	0.045	0.035	0.045	3,915.00	0.0318	12	X: Y:	1,750.00	30.00 1,749.00	39.00 1,744.00	45.00 1,742.00	60.00 1,742.00	71.00 1,745.00	134.00 1,747.00	177.00 1,751.00	
RT5	0.045	0.035	0.045	1,481.00	0.0187	p-25	X: Y:	- 2,616.00	10.00 2,614.00	20.00 2,612.00	28.00 2,610.00	52.00 2,610.00	64.00 2,612.00	88.00 2,612.00	96.00 2,614.00	

Page 4

JC 4																3/23/20
Route ID	LOBN	Chan N	ROB N	Length (ft)	Slope (ft/ft)	Max Elev (ft)		1.	2.	3.	4.	5.	6.	7.	8.	
RT50	0.050	0.040	0.050	5,454.00	0.0168	ė.	X: Y:	100.00 1,609.00	140.00 1,608.50	195.00 1,608.50	220.00 1,602.50	330.00 1,602.50	360.00 1,608.00	370.00 1,608.00	380.00 1,609.00	
RT52	0.055	0.040	0.055	8,331.00	0.0383	\sim	X: Y:	1,885.00	37.00 1,882.00	65.00 1,868.00	71.00 1,865.00	81.00 1,866.00	91.00 1,869.00	237.00 1,872.00	270.00 1,883.00	
RT54	0.050	0.040	0.050	3,822.00	0.0200	4-0	X: Y:	120.00 1,622.00	126.00 1,621.00	130.00 1,621.00	150.00 1,615.00	480.00 1,613.00	510.00 1,618.00	520.00 1,618.00	530.00 1,619.00	
RT56	0.050	0,040	0.050	7,162.00	0.0422	0.0	X: Y:	- 1,807.00	13.00 1,804.00	71.00 1,803.00	114.00 1,800.00	132.00 1,799.00	154.00 1,804.00	189.00 1,806.00	224.00 1,808.00	
RT58	0.055	0.040	0.055	3,099.00	0.0276	17	X: Y:	160.00 2,100.00	180,00 2,100.00	200.00 2,100.00	340.00 2,030.00	490.00 2,030.00	540.00 2,045.00		1,100.00 2,056.00	
RT59A	0.055	0.040	0.055	1,049.00	0.0454		X: Y:	20.00 1,970.00	70.00 1,965.00	110.00 1,964.00	160.00 1,961.00	220.00 1,961.00	380.00 1,966.00	500.00 1,968.00	540.00 1,969.00	
RT59B	0.055	0.040	0.055	4,061.00	0.0267		X: Y:	150.00 1,924.00	180.00 1,921.00	205.00 1,918.00	250.00 1,904.00	490.00 1,904.00	510.00 1,910.00	560.00 1,913.00	600.00 1,915.00	
RT6	0.050	0.035	0.050	3,706.00	0.0207	Z	X: Y:	2,560.00	19.00 2,558.00	82.00 2,558.00	107.00 2,556.00	117.00 2,556.00	144.00 2,558.00	160.00 2,560.00	181.00 2,562.00	
T60	0.055	0.040	0.055	2,351.00	0.0243	¥	X: Y:	200.00 1,835.00	250.00 1,833.00	260.00 1,830.00	360.00 1,825.00	520.00 1,825.00	620.00 1,830.00	830.00 1,830.00	880.00 1,835.00	
T61	0.050	0.035	0.050	2,458.00	0.0318	1,51	X: Y:	240.00 1,793.00	270.00 1,791.00	300.00 1,791.00	310.00 1,789.00	325.00 1,789.00	335.00 1,790.00	380.00 1,790.00	390.00 1,791.00	
T62	0.050	0.035	0.050	4,669.00	0.0240	1 6	X: Y:	400.00 1,727.00	420.00 1,725.00	430.00 1,723.00	540.00 1,720.00	950.00 1,722.00	970.00 1,726.00	990.00 1,726.00	1,000.00 1,727.00	
RT63	0.050	0.035	0.050	5,520.00	0.0185	10.50	X: Y:	130.00 1,627.00	210.00 1,623.00	500.00 1,622.00	540.00 1,617.00	630.00 1,618.00	660.00 1,626.00	670.00 1,626.00	680.00 1,627.00	

Page 5

Route ID	LODN	Chan N	ROB N	Length	Clana	Max			100	-0.5			- C.	5	1.4	
Noute ID	LOBN	Chan N	KOBN	(ft)	Slope (ft/ft)	Elev (ft)		1.	2.	3.	4.	5.	6.	7.	8.	
RT7	0.045	0.030	0.045	2,096.00	0.0191	4	X: Y:	2,630.00	3.00 2,628.00	5.00 2,626.00	8.00 2,624.00	27.00 2,624.00	30.00 2,626.00	32.00 2,628.00	34.00 2,630.00	
RT8	0.050	0.035	0.050	3,543.00	0.0233	9	X: Y:	2,598.50	18.00 2,598.00	28.00 2,597.00	48.00 2,596.00	57.00 2,596.00	66.00 2,598.00	83.00 2,600.00	97.00 2,602.00	
RTD48A	0.055	0.040	0.055	1,976.80	0.0415	den	X: Y:	1,972.00	73.00 1,970.00	78.00 1,967.00	82.00 1,962.00	91.00 1,961.00	114.00 1,965.00	125.00 1,971.00	133.00 1,972.00	

Page 1 3/23/2016

Diversion ID/ DT Card ID	Maximum Volume (ac-ft)	Maximum Diversion (cfs)		1	2.	3.	4.	5.	6.	7.	8.	9.	10.
2004			1.120.140		(Pake	21000		0.000	57.5	10.000			
D22A DT22A		2,000	Inflow (cfs) Diversion (cfs)		500 96	1,000 192	2,000 384	4,000 768	8,000 1,537	16,000 3,200			
D48A			Inflow (cfs)		1,000	2,000	3,000	3,500	4,083	4,500	5,000		
DT48A			Diversion (cfs)		1,000	1,880	2,530	2,870	3,373	3,440	3,600		

City of Scottsdale Drainage Design Management System SUB BASINS

3/23/2016

Project Reference: REATA WITH DIVERT

				Sub Basin Parameters					Rainfall Losses					
Area ID	Area (sq mi)	Length (mi)	Slope (ft/mi)	S-Graph	Lca (mi)	Lag (min)	Velocity (f/s)	Kn	IA (in)	DTHETA	PSIF (in)	XKSAT (in/hr)	RTIMP (%)	
/lajor Bas	in ID: 01			1 ()				-						
01	0.159	1.04	130.6	Mountain	0.58	14.10	6.46	0.030	0.29	0.25	6.00	0.192	10	
02	0.140	0.76	136.6	Mountain	0.28	9.40	7.09	0.030	0.26	0.25	6.00	0.212	26	
13	0.149	0.71	169.0	Mountain	0.21	7.90	7.87	0.030	0.27	0.25	6.00	0.207	19	
04	0.124	0.61	167.5	Mountain	0.27	8.20	6.54	0.030	0.29	0.25	6.00	0.195	13	
05	0.145	0.57	118.9	Mountain	0.25	8.30	6.02	0.030	0.19	0.23	6.16	0.219	41	
06	0.180	0.72	118.1	Mountain	0.30	10.10	6.30	0.031	0.22	0.24	6.16	0.211	33	
07	0.124	0.69	125.0	Mountain	0.38	10.40	5.87	0.030	0.26	0.25	6.00	0.213	32	
08	0.134	0.83	367.0	Mountain	0.42	10.00	7.25	0.032	0.23	0.27	6.00	0.213	26	
9	0.114	0.79	219.0	Mountain	0.44	10.40	6.67	0.030	0.30	0.25	6.00	0.185	6	
0	0.462	1.14	203.6	Mountain	0.48	12.90	7.75	0.031	0.25	0.26	5.85	0.217	26	
(1	0.174	0.75	139.3	Mountain	0.35	10.20	6.49	0.030	0.30	0.25	6.00	0.185	5	
12	0.303	1.01	147.7	Mountain	0.63	14.10	6.30	0.030	0.27	0.26	6.00	0.205	16	
13	0.259	1.45	636.1	Mountain	0.73	14.70	8.70	0.034	0.23	0.27	4.96	0.351	17	
14	0.154	1.03	747.9	Mountain	0.48	11.00	8.27	0.035	0.26	0.29	5.85	0.200	15	
15	0.700	1.11	118.4	Mountain	0.44	13.70	7.11	0.031	0.29	0.26	6.00	0.186	9	
16	0.521	1.38	728.3	Mountain	0.83	16.10	7.59	0.037	0.23	0.30	6.00	0.200	15	
17	0.324	0.81	1016.0	Mountain	0.25	8.00	8.93	0.038	0.25	0.28	6.34	0.160	21	
18	0.141	1.04	670.3	Mountain	0.54	11.40	8.03	0.034	0.25	0.30	6.00	0.189	20	
19	0.151	0.80	731.1	Mountain	0.32	8.80	7.97	0.036	0.25	0.30	5.85	0.204	19	
20	0.264	0.76	257.8	Mountain	0.42	10.70	6.23	0.033	0.27	0.29	5.46	0.231	16	
21	0.129	0.56	198.7	Mountain	0.26	7.60	6.48	0.030	0.30	0.25	6.00	0.185	6	

Page 1

* Non default value (stSubBasSG rpt)

City of Scottsdale Drainage Design Management System SUB BASINS

Page 2	Project Reference: REATA_WITH DIVERT	3/23/2016

	Sub Basin Parameters								Rainfall L				osses		
Area ID	Area (sq mi)	Length (mi)	Slope (ft/mi)	S-Graph	Lca (mi)	Lag (min)	Velocity (f/s)	Kn	IA (in)	DTHETA	PSIF (in)	XKSAT (in/hr)	RTIMP (%)		
/lajor Bas	sin ID: 01														
22	0.222	1.51	165.0	Mountain	0.79	17.50	7.60	0.030	0.29	0.27	5.71	0.212	8		
3	0.279	1.20	184.2	Mountain	0.62	14,30	7.35	0.030	0.24	0.16	7.27	0.124	16		
4	0.380	1.70	393.3	Mountain	1.01	18.20	8.21	0.032	0.27	0.29	4.87	0.316	15		
5	0.274	1.24	438,9	Mountain	0.59	16.10	6.78	0.040	0.25	0.31	5.05	0.274	14		
6	0.063	0.73	745.1	Mountain	0.33	9.10	7.09	0.038	0.27	0.32	5.24	0.238	12		
7	0.108	0.86	334.6	Mountain	0.41	10.90	6.94	0.034	0.28	0.28	5.58	0.228	9		
8	0.167	1.02	282.3	Mountain	0.54	11.80	7.62	0.030	0.30	0.23	6.16	0.180	8		
9	0.151	0.88	261.2	Mountain	0.38	9.90	7.81	0.030	0.30	0.26	6.00	0.180	5		
0	0.392	1.48	314.9	Mountain	0.75	20.60	6.32	0.041	0.26	0.32	4.72	0.285	2		
1	0.496	1.58	838.1	Mountain	0.61	16.60	8.37	0.042	0.26	0.32	4.33	0.373	6		
2	0.441	1.30	859.7	Mountain	0.43	13.80	8,33	0.043	0.24	0.33	4.65	0.301	6		
3	0.176	0.98	969.8	Mountain	0.46	10.40	8.32	0.036	0.25	0.33	5.85	0.167	2		
4	0.456	0.92	902.2	Mountain	0.29	8.90	9.15	0.037	0.28	0.29	4.72	0.310	3		
5	0.410	0.78	986.4	Mountain	0.40	9.00	7.65	0.036	0.28	0.28	4.33	0.376	4		
7	0.629	1.12	1368.8	Mountain	0.51	12.10	8.13	0.041	0.23	0.33	4.22	0.350	1		
8	0.057	0.22	1843.7	Mountain	0.22	5.20	3.64	0.048	0.26	0.34	4.28	0.341	1		
19	0.153	0.63	1476.2	Mountain	0.26	7.60	7.29	0.042	0.23	0.31	4.28	0.405	2		
10	0.152	0.73	873.2	Mountain	0.45	8.30	7.69	0.032	0.28	0.27	3.90	0.519	13		
И	0.349	1.21	688.8	Mountain	0.54	11.70	9.11	0.033	0.25	0.27	3.53	0.714	12		
12	0.318	1.47	736.9	Mountain	0.47	12.80	10.06	0.036	0.28	0.29	3.56	0.599	4		

* Non default value

Drainage Design Management System SUB BASINS 10.0211

City of Scottsdale

Page 3	Project Reference: REATA WITH DIVERT	3/23/2016

					Basin Parameters						Rainfall Loss		
Area ID	Area (sq mi)	Length (mi)	Slope (ft/mi)	S-Graph	Lca (mi)	Lag (min)	Velocity (f/s)	Kn	IA (in)	DTHETA	PSIF (in)	XKSAT (in/hr)	RTIMP (%)
Major Bas	in ID: 01	3				1.						1,5,1	
43	0.142	0.93	495.7	Mountain	0.41	9.50	8.62	0.031	0.31	0.34	3.18	0.760	1
44	0.126	0.81	372.4	Mountain	0.38	9.00	7.93	0.030	0.29	0.29	2.74	1.184	5
45	0.161	1.10	263.2	Mountain	0.46	11.60	8.38	0.030	0.21	0,29	2.75	1.418	5
46	0.175	0.83	1281.0	Mountain	0.39	8.90	8.20	0.037	0.28	0.28	4.08	0.450	4
47	0.547	1.74	1033.6	Mountain	1.04	19.80	7.73	0.041	0.27	0.30	4.17	0.392	3
48	1.570	2.55	653.5	Mountain	1.13	27.60	8.11	0.044	0.23	0.35	4.28	0.367	
49	0.433	1.93	282.4	Mountain	0.77	18.90	9.00	0.033	0.25	0.31	3.18	0.871	12
50	0.137	0.73	165.3	Mountain	0.44	10.30	6.25	0.029	0.30	0.31	2.75	1.256	17
5 <mark>1</mark>	0.721	1.90	416.5	Mountain	1.11	20.00	8.32	0.033	0.25	0.27	3.62	0.685	9
52	0.598	1.57	1216.7	Mountain	0.67	16.00	8.65	0.042	0.21	0.35	4.33	0.360	
53	0.700	2.29	536.7	Mountain	1.09	22.20	9.07	0.036	0.27	0.35	3.65	0.532	
54	0.488	1.50	754.7	Mountain	1.06	18.50	7.13	0.038	0,25	0.35	3.75	0.501	
55	0.341	1.16	1286.8	Mountain	0.46	13.10	7.77	0.045	0.22	0.35	4.33	0.363	
56	1.226	2.01	1011.2	Mountain	1.11	24.10	7.32	0.046	0.23	0.35	4.12	0.405	
57	0.084	0.54	208.0	Mountain	0.18	5.40	8.82	0.025	0.35	0.35	2.75	1.014	
58	0.112	0.63	165.3	Mountain	0.25	7.60	7.31	0.028	0.32	0.30	5.85	0.183	3
59	0.055	0.64	140.6	Mountain	0.37	8.80	6.38	0.027	0.33	0.30	4.03	0.449	2
60	0.182	0.97	163.3	Mountain	0.52	11.80	7.23	0.028	0.27	0.31	2.79	1.238	15
61	0.116	0.91	170.7	Mountain	0.33	10.30	7.77	0.030	0.23	0.21	6.34	0.202	26
62	0.122	0.47	168.3	Mountain	0.21	6.10	6.76	0.027	0.31	0.31	4.03	0.471	12
63	0.386	1.28	142.2	Mountain	0.58	14.50	7.74	0.029	0.26	0.31	2.79	1.243	30

* Non default value

City of Scottsdale Drainage Design Management System SUB BASINS

3/23/2016

Page 4 Project Reference: REATA WITH DIVERT

				Sub Ba	asin Parameters					F	ainfall Loss	es	
Area ID	Area (sq mi)	Length (mi)	Slope (ft/mi)	S-Graph	Lca (mi)	Lag (min)	Velocity (f/s)	Kn	IA (in)	DTHETA	PSIF (in)	XKSAT (in/hr)	RTIMP (%)
	asin ID: 01												
64	0.638	1.38	102.2	Mountain	0.63	16.50	7.40	0.029	0.28	0.29	3.22	0.870	22

* Non default value (stsubBasSG rpt)

LAND USE

pject Reference: REATA WITH DIVERT

3/23/2016

City of Scottsdale
Drainage Design Management System
LAND USE
Project Reference: REATA WITH DIVERT

Page 1

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Кп	Description
vlajor B	asin ID: 01								
01	120	0.1207	76.0	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0101	6.4	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0280	17.6	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
		0.1588	100.0						
02	120	0.0109	7.8	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0181	12.9	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.1109	79.2	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	200	0.0001	0.1	0.10	80	60.0	NORMAL	0.030	General Commercial (Commercial Where no detail available)
		0.1400	100.0						
03	120	0.0460	31.0	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0280	18.8	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0742	49.9	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	170	0.0004	0.3	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
		0.1486	100.0						
04	120	0.0789	63.8	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0110	8.9	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0331	26.8	0,25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0004	0.3	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0003	0.2	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
		0.1237	100.0						
05	130	0.0001	0.1	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du

* Non default value

City of Scottsdale Drainage Design Management System LAND USE

Page 2

Project Reference: REATA WITH DIVERT

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
Vajor B	asin ID: 01								
05	140	0.0349	24.0	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0163	11.2	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0333	22.9	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	200	0.0347	23.8	0.10	80	60.0	NORMAL	0.030	General Commercial (Commercial where no detail available)
	720	0.0262	18.0	0.10	5	90.0	NORMAL	0.030	Golf courses
		0.1455	100.0						
06	120	0.0053	2.9	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	150	0.0022	1.2	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.1272	70.5	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	710	0.0396	22.0	0.10	5	90.0	NORMAL	0.030	Active Open Space (Includes parks)
	780	0.0060	3.3	0.25	0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1803	99.9						
7	120	0.0118	9.5	0.30	.5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0197	15.9	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	150	0.0377	30.5	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0546	44.1	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
		0.1238	100.0						
08	130	0.0023	1.7	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0719	53.7	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0001	0.1	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0259	19.3	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)

* Non default value

LAND USE
ct Reference: REATA WITH DIVERT 3/23/2016

City of Scottsdale
Drainage Design Management System
LAND USE
Project Reference: REATA WITH DIVERT

read of the	
Page 3	Pr

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Кп	Description
/lajor B	asin ID: 01								
08	720	0.0180	13.4	0.10	5	90.0	NORMAL	0.030	Golf courses
	780	0.0158	11.8	0.25	-0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1340	100.0						
9	120	0.1089	95.4	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0048	4.2	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	150	0.0001	0.1	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0003	0.3	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
		0.1141	100.0						
0	120	0.2435	52.7	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0021	0.5	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0004	0.1	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0183	4.0	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0817	17.7	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	200	0.0781	16.9	0.10	80	60.0	NORMAL	0.030	General Commercial (Commercial where no detail available)
	710	0.0130	2.8	0.10	5	90.0	NORMAL	0.030	Active Open Space (Includes parks)
	720	0.0003	0.1	0.10	5	90.0	NORMAL	0.030	Golf courses
	780	0.0243	5.3	0.25	0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.4617	100.1						
1	120	0.1666	95.5	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0078	4.5	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
		0.1744	100.0						

* Non default value (stLuDataSG rpt;

City of Scottsdale Drainage Design Management System LAND USE

Page 4 Project Reference: REATA WITH DIVERT

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
Major B	asin ID: 01								
12	120	0.0852	28.1	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.1049	34.6	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0193	6.4	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0723	23.9	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	770	0.0213	7.0	0.15	0	3.5 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope≤ 10%
		0.3030	100.0						
3	130	0.0423	16.3	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.1148	44.3	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	720	0.0533	20.6	0.10	.5	90.0	NORMAL	0.030	Golf courses
	780	0.0488	18.8	0.25	0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.2592	100.0						
4	130	0.0593	38.5	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0457	29.7	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0015	1.0	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	770	0.0093	6.0	0.15	0	3.5 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.0381	24.8	0.25	0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1539	100.0						
5	120	0.5485	78.4	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	140	0.0429	6.1	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0313	4.5	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0284	4.1	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)

* Non default value

City of Scottsdale Drainage Design Management System LAND USE Project Reference: REATA WITH DIVERT

Page 5

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
/lajor B	asin ID: 01								
15	760	0.0032	0.5	0.35	0	3.5 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.0179	2.6	0.15	-0	3.5 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.0275	3.9	0.25	Ō	3,5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.6997	100.1						
3	130	0.0456	8.8	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.1684	32.3	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0122	2.3	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0240	4.6	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	720	0.0931	17.9	0.10	.5	90.0	NORMAL	0.030	Golf courses
	770	0.0050	1.0	0.15	0	3.5 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.1723	33.1	0.25	0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.5206	100.0						
7	130	0.0106	3.3	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0448	13.8	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0483	14.9	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0831	25.7	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	720	0.0105	3.2	0.10	5	90.0	NORMAL	0.030	Golf courses
	780	0.1263	39.0	0.25	0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.3236	99.9						
18	140	0.0271	19.2	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0652	46.3	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)

City of Scottsdale Drainage Design Management System LAND USE Project Reference: REATA WITH DIVERT

Page 6

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
Major B	asin ID: 01								
18	170	0.0020	1.4	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	760	0.0047	3.3	0.35	0	3.5 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.0094	6.7	0.15	0	3.5 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.0324	23.0	0.25	0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1408	99.9						
9	130	0.0002	0.1	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0625	41.3	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0350	23.1	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	760	0.0069	4.6	0.35	0	3.5 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.0011	0.7	0.15	0	3.5 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.0457	30.2	0.25	0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1514	100,0						
0	120	0.0480	18.2	0.30	.5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0080	3.0	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.1020	38.7	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0243	9.2	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	760	0.0316	12.0	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.0002	0.1	0.15	0	7.0	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.0497	18.8	0.25	0	3.5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.2638	100.0	10.50		7.6	Taket.		
21	120	0.1222	95.0	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)

City of Scottsdale Drainage Design Management System LAND USE Project Reference: REATA WITH DIVERT

Page 7

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
/lajor B	asin ID: 01								
21	130	0.0059	4.6	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0004	0.3	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	780	0.0001	0.1	0.25	0	3,5 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1286	100.0						
22	120	0.1106	49.7	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0425	19.1	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0140	6.3	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	720	0.0157	7.1	0.10	5	90.0	NORMAL	0.030	Golf courses
	760	0.0360	16.2	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	780	0.0036	1.6	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.2224	100.0						
23	120	0.0789	28.3	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0078	2.8	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.1248	44.8	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	720	0.0577	20.7	0.10	5	90.0	NORMAL	0.030	Golf courses
	760	0.0096	3.4	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.2788	100.0						
24	120	0.0466	12.2	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	140	0.1045	27.5	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	170	0.0440	11.6	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	720	0.0323	8.5	0.10	5	90.0	NORMAL	0.030	Golf courses

City of Scottsdale Drainage Design Management System LAND USE Project Reference: REATA WITH DIVERT

Page 8

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
Major B	asin ID: 01								
24	760	0.0862	22.7	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	780	0.0669	17.6	0.25	-0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.3805	100.1						
25	140	0.1191	43.5	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	170	0.0015	0.5	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	720	0.0062	2.3	0.10	5	90.0	NORMAL	0.030	Golf courses
	760	0.0070	2.6	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	780	0.1399	51.1	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.2737	100.0						
26	130	0.0002	0.3	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0252	40.0	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	760	0.0108	17.1	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	780	0.0268	42.5	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.0630	99.9						
27	120	0.0469	43.4	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0243	22.5	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0133	12.3	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	770	0.0008	0.7	0.15	O	7.0	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.0228	21.1	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1081	100.0						
28	120	0.1440	86.3	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)

* Non default value (stLuDataSG rpt;

City of Scottsdale Drainage Design Management System LAND USE Project Reference: REATA WITH DIVERT

Page 9

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
Major B	asin ID: 01								
28	130	0.0099	5.9	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0130	7.8	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
		0.1669	100.0						
9	120	0.1367	90.5	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	760	0.0144	9.5	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.1511	100.0						
0	120	0.1176	30.0	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	760	0.0101	2.6	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.0431	11.0	0.15	0	7.0	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.2207	56.4	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.3915	100.0						
1	130	0.1570	31.6	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0123	2.5	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	770	0.0308	6.2	0.15	0	7.0	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.2964	59.7	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.4965	100.0						
32	120	0.0115	2.6	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0008	0.2	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0816	18.5	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	770	0.0707	16.0	0.15	0	7.0	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.2767	62.7	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%

City of Scottsdale Drainage Design Management System LAND USE Project Reference: REATA WITH DIVERT

Page 10

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
Vajor B	lasin ID: 01								
		0.4413	100.0						
33	120	0.0777	44.3	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	140	0.0009	0.5	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	770	0.0463	26.4	0.15	0	7.0	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.0506	28.8	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1755	100.0						
4	120	0.2846	62.4	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	760	0.0003	0.1	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	780	0.1713	37.5	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.4562	100.0						
5	120	0.2850	69.5	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	780	0.1249	30.5	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.4099	100.0						
37	120	0.0931	14.8	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0130	2.1	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	760	0.0116	1.8	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.1775	28.2	0.15	Ō	7.0	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.3340	53.1	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.6292	100.0						
38	120	0.0065	11.4	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	780	0.0507	88.6	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%

City of Scottsdale Drainage Design Management System LAND USE 3/23/2016

Project Reference: REATA WITH DIVERT

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
/lajor B	asin ID: 01								
		0.0572	100.0						
9	120	0.0244	15.9	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	720	0.0334	21.8	0.10	5	90.0	NORMAL	0.030	Golf courses
	760	0.0023	1.5	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	780	0.0931	60.8	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1532	100.0						
0	120	0.0910	59.8	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	170	0.0337	22.1	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	760	0.0081	5.3	0.35	0	7.0	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	780	0.0194	12.7	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1522	99.9						
t	120	0.1689	48.4	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0132	3.8	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	170	0.0604	17.3	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	720	0.0604	17.3	0.10	5	90.0	NORMAL	0.030	Golf courses
	780	0.0463	13.3	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.3492	100.1						
2	120	0.2192	68.8	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	720	0.0051	1.6	0.10	5	90.0	NORMAL	0.030	Golf courses
	780	0.0941	29.6	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.3184	100.0						

* Non default value (stLuDataSG.rpt;

H DIVERT 3/23/2016

City of Scottsdale Drainage Design Management System LAND USE Project Reference: REATA WITH DIVERT

Page 12

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
Major B	asin ID: 01								
43	170	0.0019	1.3	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	720	0.0072	5.1	0.10	5	90.0	NORMAL	0.030	Golf courses
	760	0.0987	69.7	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	780	0.0339	23.9	0.25	0	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1417	100.0						
14	120	0.1188	94.5	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	720	0.0069	5.5	0.10	5	90.0	NORMAL	0.030	Golf courses
		0.1257	100.0						
5	120	0.0880	54.6	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	720	0.0724	44.9	0.10	5	90.0	NORMAL	0.030	Golf courses
	760	0.0008	0.5	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.1612	100.0						
6	120	0.1161	66.3	0.30	.5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	780	0.0591	33.7	0.25	0	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.1752	100.0						
7.	120	0.2479	45.3	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	780	0.2996	54.7	0.25	0	7.0	DRY	0.050	Mountain Terrain Slopes > 10%
		0.5475	100.0						
18	120	0.0042	0.3	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	760	0.0710	4.5	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.3975	25.3	0.15	0	18.0 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%

* Non default value

(stLuDataSG.rpt)

City of Scottsdale Drainage Design Management System LAND USE Project Reference: REATA WITH DIVERT

Page 13

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
Major B	asin ID: 01								
48	780	1.0975	69.9	0.25	0	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%
			1202						
49	120	1.5702 0.0147	100.0 3.4	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
+0									
	130	0.0066	1.5	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	150	0.0082	1.9	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0988	22.8	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	720	0.0620	14.3	0.10	- 5	90.0	NORMAL	0.030	Golf courses
	760	0.1105	25.5	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.0330	7.6	0.15	0	18.0 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.0990	22.9	0.25	0	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.4328	99.9						
50	130	0.0734	53.5	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	170	0.0265	19.3	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	760	0.0372	27.1	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.1371	99.9						
51	120	0.3433	47.6	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0495	6.9	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	170	0.0674	9.4	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	720	0.1468	20.4	0.10	5	90.0	NORMAL	0.030	Golf courses
	760	0.0109	1.5	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	780	0.1028	14.3	0.25	0	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%

* Non default value (stLuDataSG rpt;

3/23/2016

City of Scottsdale Drainage Design Management System LAND USE Project Reference: REATA WITH DIVERT

Page 14

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
/lajor E	Basin ID: 01								
		0.7207	100.1						
52	770	0.2248	37.6	0.15	0	18.0 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.3735	62.4	0.25	0	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.5983	100.0						
3	710	0.0170	2.4	0.10	5	12.0 *	NORMAL	0.030	Active Open Space (Includes parks)
	760	0.2789	39.8	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.1261	18.0	0.15	0	18.0 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.2780	39.7	0.25	Ō	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.7000	99.9						
54	760	0.1225	25.1	0.35	Ō	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
	770	0.1473	30.2	0.15	0	18.0 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.2186	44.8	0.25	0	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.4884	100.1						
5	770	0.0912	26.8	0.15	0	18.0 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.2493	73.2	0.25	0	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%
		0.3405	100.0						
56	130	0.0012	0.1	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	770	0.2357	19.2	0.15	0	18.0 *	DRY	0.030	Hillslopes, Sonoran Desert, Moderate Slopes 5% slope< 10%
	780	0.9891	80.7	0.25	0	18.0 *	DRY	0.050	Mountain Terrain Slopes > 10%
		1.2260	100.0						
57	760	0.0838	100.0	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%

* Non default value

(stLuDataSG.rpt;

3/23/2016

City of Scottsdale Drainage Design Management System LAND USE

Project Reference: REATA WITH DIVERT

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Kn	Description
Major B	asin ID: 01								
		0.0838	100.0						
58	120	0.0692	61.6	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	760	0.0431	38.4	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.1123	100.0						
9	120	0.0259	46.8	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0005	0.9	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	760	0.0289	52.3	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.0553	100.0						
30	120	0.0031	1.7	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0019	1.0	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0002	0.1	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0674	37.0	0,25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0137	7.5	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	720	0.0274	15.0	0.10	5	90.0	NORMAL	0.030	Golf courses
	760	0.0687	37.7	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.1824	100.0						
61	120	0.0014	1.2	0.30	5	30.0	NORMAL	0.030	Estate Residential (1/5 du per acre to 1 du per acre)
	130	0.0093	8.1	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	140	0.0334	28.9	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	150	0.0398	34.5	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0116	10.0	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)

* Non default value

Page 15

Project Reference: REATA WITH DIVERT 3/23/2016

City of Scottsdale Drainage Design Management System LAND USE

Page 16

Sub Basin	Land Use Code	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Vegetation Cover (%)	DTHETA	Кп	Description
Major B	asin ID: 01								
61	720	0.0199	17.2	0.10	5	90.0	NORMAL	0.030	Golf courses
	760	0.0001	0.1	0.35	-0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.1155	100.0						
32	140	0.0402	32.9	0.25	30	50.0	NORMAL	0.030	Medium Lot Residential - Single Family (2-4 du per acre)
	170	0.0019	1.6	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	200	0.0015	1.2	0.10	80	60.0	NORMAL	0.030	General Commercial (Commercial where no detail available)
	760	0.0785	64.3	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.1221	100.0						
3	130	0.1565	40.5	0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	150	0.0114	3.0	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0030	0.8	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	200	0.1080	28.0	0.10	80	60.0	NORMAL	0.030	General Commercial (Commercial where no detail available)
	760	0.1074	27.8	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.3863	100.1						
i 4	130	0.0002		0.30	15	50.0	NORMAL	0.030	Large Lot Residential - Single Family (1 du per acre to 2 du
	150	0.4275	67.0	0.25	30	50.0	NORMAL	0.030	Small Lot Residential - Single Family (4-6 du per acre)
	170	0.0253	4.0	0.25	45	50.0	NORMAL	0.030	Medium Density Residential - Muli Family (5-10 du per acre)
	760	0.1848	29.0	0.35	0	18.0 *	DRY	0.025	Undeveloped Desert Rangeland, Slopes <5%
		0.6378	100.0						

* Non default value (stLuDataSG.rpt)

		34
Pac	10	1

Area ID	Book Number	Map Unit	Soil ID	Area (sq mi)	Area (%)	XKSAT	Rock Percent	Effective Rock (%)	Comments	3/23/2010
		- 700		754 007	/10/		(%)			
Major E	Basin ID: 0	1								
01	645	61	64561	0.159	100.00	0.150	0.30	100		
02	645	61	64561	0.137	97.70	0.150	-	100		
	645	96	64596	0.003	2.30	0.070	1.2	100		
03	645 645	61 96	64561 64596	0.148 0.000	99.80 0.20	0.150 0.070	-	100 100		
04	645	61	64561	0.124	100.00	0.150		100		
	645	61					, i			
05	645	96	64561 64596	0.133	91.40 8.60	0.150 0.070	2	100 100		
06	645	61	64561	0.167	92.80	0.150		100		
	645	63	64563	0.006	3.30	0.140	25.00	1		
	645	96	64596	0.002	1.30	0.070	- 20	100		
	645	126	645126	0.005	2.50	0.000	-	100		
07	645	61	64561	0.124	100.00	0.150	10-60	100		
08	645	61	64561	0.100	74.80	0.150		100		
	645	63	64563	0.034	25.20	0.140	25.00	1		
09	645	61	64561	0.112	98.20	0.150	25.00	100		
	645	63	64563	0.002	1.80	0.140	25.00	1		
10	645 645	6	6456 64533	0.038 0.037	8.30 8.10	0.620 0.230	-	100		
	645	33 61	64561	0.037	53.90	0.230	9	100 100		
	645	63	64563	0.102	22.00	0.140	25.00	1		
	645	96	64596	0.036	7.70	0.070	-	100		
11	645	61	64561	0.168	96.20	0.150		100		
	645	63	64563	0.007	3.80	0.140	25.00	- 1		
2	645	6	6456	0.003	1.10	0.620	-	100		
	645 645	61	64561	0.279	91.90	0.150	25.00	100		
		63	64563	0.021	7.00	0.140	25.00	1		
3	645 645	6 61	6456 64561	0.103 0.022	39.90 8.60	0.620 0.150	-	100 100		
	645	63	64563	0.058	22.40	0.140	25.00	1		
	645	121	645121	0.076	29.10	0.120	1.3	100		
14	645	6	6456	0.006	3.60	0.620	~	100		
	645	61	64561	0.101	65.90	0.150	12.33	100		
	645	63	64563	0.047	30.50	0.140	25.00	1		
15	645	6	6456	0.004	0.60	0.620	4	100		
	645 645	61 63	64561 64563	0.667 0.029	95.30 4.10	0.150 0.140	25.00	100 1		
16	645	6	6456	0.060	11.40	0.620		100		
10	645	33	64533	0.001	0.30	0.230		100		
	645	61	64561	0.009	1.80	0.150	100	100		
	645	63	64563	0.186	35.70	0.140	25.00	. 1		
	645 645	96 121	64596 645121	0.039 0.226	7.50 43.40	0.070 0.120		100 100		
17	645 645	61 63	64561 64563	0.116 0.113	35.90 34.90	0.150 0.140	25.00	100 1		
	645	96	64596	0.052	16.10	0.070	-	100		
	645	121	645121	0.042	13.00	0.120	(4)	100		
18	645	6	6456	0.000	0.10	0.620	-	100		
	645	61	64561	0.109	77.30	0.150	22.22	100		
	645	63	64563	0.032	22.50	0.140	25.00	1		
19	645	6	6456	0.015	9.80	0.620		100		
	645 645	61 63	64561 64563	0.055 0.055	36.50 36.60	0.150 0.140	25.00	100 1		
	645	121	645121	0.033	17.10	0.120	23.00	100		
20	645	6	6456	0.039	14.90	0.620	-	100		
	645	61	64561	0.198	74.90	0.150		100		
	645	63	64563	0.027	10.20	0.140	25.00	1		
21	645	61	64561	0.129	100.00	0.150	_	100		

Page 2					Project F	Reference: F	REATA WITH	H DIVERT		3/23/2016
Area ID	Book Number	Map Unit	Soil ID	Area (sq mi)	Area (%)	XKSAT	Rock Percent (%)	Effective Rock (%)	Comments	
Major I	Basin ID: (01					7.0			
22	645	6	6456	0.050	22.40	0.620	~	100		
	645	8	6458	0.019	8.40	0.960		100		
	645	31	64531	0.005	2.20	0.330	35.00	1		
	645	40	64540	0.013	5.70	0.170	-	100		
	645	93	64593	0.008	3.70	0.330		100		
	645	96	64596	0.125	56.30	0.070		100		
	645	121	645121	0.003	1.30	0.120	-	100		
23	645	6	6456	0.007	2.40	0.620	0.40	100		
	645	8	6458	0.001	0.50	0.960		100		
	645	40	64540	0.038	13.60	0.170	-	100		
	645	96	64596	0.232	83.30	0.070	11.3	100		
	645	121	645121	0.000	0.10	0.120	-	100		
24	645	8	6458	0.081	21.30	0.960	-	100		
	645	31	64531	0.066	17.20	0.330	35.00	1		
	645	40	64540	0.062	16.30	0.170		100		
	645	41	64541	0.016	4.20	0.170	-3	100		
	645	61	64561	0.115	30.20	0.150		100		
	645	63	64563	0.021	5.60	0.140	25.00	1		
	645	96	64596	0.020	5.20	0.070	11-60	100		
25	645	6	6456	0.007	2.70	0.620	1-1	100		
	645	31	64531	0.134	48.80	0.330	35.00	1		
	645	61	64561	0.100	36.50	0.150	-	100		
	645	63	64563	0.033	12.00	0.140	25.00	1		
26	645	6	6456	0.002	3.70	0.620		100		
20	645	31	64531	0.022	34.60	0.330	35.00	1		
	645	61	64561	0.025	39.80	0.150	-	100		
	645	63	64563	0.014	21.90	0.140	25.00	1		
4										
27	645	31	64531	0.037	33.90	0.330	35.00	1		
	645 645	61 121	64561 645121	0.040 0.032	36.70 29.40	0.150 0.120	- 2	100 100		
28	645	61	64561	0.109	65.40	0.150	- 10	100		
	645	63	64563	0.031	18.60	0.140	25.00	1		
	645	121	645121	0.027	15.90	0.120	0.5	100		
29	645	61	64561	0.151	100.00	0.150	-	100		
30	645	31	64531	0.281	71.70	0.330	35.00	1		
2.0	645	40	64540	0.111	28.30	0.170	- 33.55	100		
31	645	31	64531	0.497	100.00	0.330	35.00	1		
32	645	31	64531	0.360	81.60	0.330	35.00	1		
12	645	61	64561	0.035	7.90	0.150	- 35.00	100		
	645	63	64563	0.046	10.40	0.140	25.00	1		
33	645	31	64531	0.015	8.40	0.330	35.00	1		
	645	61	64561	0.087	49.30	0.150	25.00	100		
	645 645	63	64563	0.068	38.70	0.140	25.00	1.00		
		121	645121	0.006	3.60	0.120	-1	100		
34	645	8	6458	0.010	2.30	0.960	1 3	100		
	645	31	64531	0.297	65.00	0.330	35.00	1		
	645	93	64593	0.086	18.90	0.330	-	100		
	645	96	64596	0.063	13.80	0.070	95	100		
35	645	31	64531	0.388	94.70	0.330	35.00	1		
	645	93	64593	0.022	5.30	0.330	-	100		
37	645	8	6458	0.028	4.50	0.960	_	100		
- 20	645	31	64531	0.601	95.50	0.330	35.00	1		
30	645	8	6458	0.002	2.80	0.960		100		
38	645	31	64531	0.002	97.20	0.960	35.00	100		
39	645	8	6458	0.002	1.30	0.960	-	100		
	645	31	64531	0.151	98.70	0.330	35.00	1		
					1000			1722		
10	645	8	6458	0.005	3.10	0.960	70.00	100		
40	645 645	8 31	6458 64531	0.005 0.116	3.10 76.40	0.960 0.330	35.00	100 1		

3/23/2016 Page 3

Area ID	Book Number	Map Unit	Soil ID	Area (sq mi)	Area (%)	XKSAT	Rock Percent (%)	Effective Rock (%)	Comments
Vlajor E	Basin ID: (01					, · · /		
41	645	8	6458	0.055	15.70	0.960		100	
	645	31	64531	0.192	55.00	0.330	35.00	1	
	645	91	64591	0.103	29.40	0.930	40	100	
12	645	8	6458	0.054	17.10	0.960	_	100	
	645	31	64531	0.183	57.40	0.330	35.00	1	
	645	91	64591	0.081	25.50	0.930	-	100	
43	645	31	64531	0.044	31.30	0.330	35.00	1	
+3	645	91	64591	0.097	68.70	0.930	-	100	
14	645 645	8 91	6458	0.039	30.90	0.960 0.930	1040	100 100	
			64591	0.087	69.10				
15	645	8	6458	0.013	8.00	0.960	10-40	100	
	645	91	64591	0.148	92.00	0.930	-	100	
16	645	8	6458	0.001	0.60	0.960	104)	100	
	645	31	64531	0.151	86.30	0.330	35.00	1	
	645	91	64591	0.023	13.20	0.930	-	100	
17	645	8	6458	0.048	8.80	0.960	-	100	
	645	31	64531	0.500	91.20	0.330	35.00	1	
18	645	8	6458	0.080	5.10	0.960	-	100	
1.4	645	31	64531	1.426	90.80	0.330	35.00	1	
	645	63	64563	0.064	4.10	0.140	25.00	1	
	645	91	64591	0.001	0.10	0.930	41	100	
19	645	8	6458	0.039	9.00	0.960	_	100	
	645	31	64531	0.139	32.00	0.330	35.00	1	
	645	91	64591	0.255	59.00	0.930	-	100	
50	645	91	64591	0.137	100.00	0.930	44	100	
51	645	31	64531	0.433	60.00	0.330	35.00	100	
	645	91	64591	0.288	40.00	0.930	41	100	
52	645	31	64531	0.598	100.00	0.330	35.00	1	
53	645	31	64531	0.437	62.40	0.330	35.00	1	
	645	91	64591	0.263	37.60	0.930	-	100	
54	645	8	6458	0.031	6.40	0.960	-	100	
	645	31	64531	0.332	67.90	0.330	35.00	1	
	645	91	64591	0.123	25.20	0.930	41	100	
	645	98	64598	0.003	0.50	0.370		100	
55	645	8	6458	0.003	0.80	0.960	- 97	100	
	645	31	64531	0.338	99.20	0.330	35.00	1	
6	645	8	6458	0.134	10.90	0.960	-	100	
	645	31	64531	1.085	88.50	0.330	35.00	1	
	645	98	64598	0.007	0.50	0.370	04	100	
57	645	91	64591	0.084	100.00	0.930		100	
					7000		19		
8	645	8	6458	0.030	26.50	0.960	25.00	100	
	645	31	64531	0.002	1.40	0.330	35.00	100	
	645 645	40 96	64540 64596	0.003 0.066	2.60 58.70	0.170 0.070	2	100 100	
	645	121	645121	0.012	10.80	0.120		100	
9	645	8	6458	0.032	58.20	0.960	25.00	100	
	645 645	31 96	64531 64596	0.001 0.004	0.90 8.00	0.330 0.070	35.00	1 100	
	645	121	645121	0.018	32.90	0.120	-	100	
60	645	8	6458	0.176	96.40	0.960	25.00	100	
	645 645	31 91	64531 64591	0.002 0.000	1.00 0.20	0.330 0.930	35.00	1 100	
	645	121	645121	0.000	2.40	0.930		100	
51	645	8	6458	0.006	4.90	0.960	1.5	100	
	645	121	645121	0.110	95.10	0.120	- 5	100	
62	645	8	6458	0.059	48.00	0.960	-	100	
	645	91	64591	0.010	8.40	0.930	0-5	100	

City of Scottsdale Drainage Design Management System SOILS Project Reference: REATA WITH DIVERT

Page 4 Project Reference: REATA WITH DIVERT 3/23/2016

					the state of the s					
Area ID	Book Number	Map Unit	Soil ID	Area (sq mi)	Area (%)	XKSAT	Rock Percent (%)	Effective Rock (%)	Comments	
Major E	Basin ID: 0	01								
62	645	121	645121	0.053	43.70	0.120	n- 2 0	100		
63	645	8	6458	0.090	23.40	0.960		100		
	645	90	64590	0.018	4.60	0.390	(4)	100		
	645	91	64591	0.278	72.00	0.930	-	100		
64	645	3	6453	0.103	16.20	0.580	1.4	100		
	645	90	64590	0.208	32.70	0.390	100	100		
	645	91	64591	0.326	51.10	0.930		100		

* Non default value

(stSIDataGA.rpt;

City of Scottsdale Drainage Design Management System RAINFALL DATA Project Reference: REATA WITH DIVERT

Page 1			Troject Residence, REATA WITH DIVERT										
ID	Method	Duration	2 Yr	5 Yr	10 Yr	25 Yr	50 Yr	100 Yr					
DEFAULT	NOAA14	5 MIN	0.300	0.404	0.482	0.585	0.663	0.741					
	NOAA14	10 MIN	0.456	0.615	0.734	0.890	1.008	1.127					
	NOAA14	15 MIN	0.566	0.762	0.910	1.104	1.250	1.397					
	NOAA14	30 MIN	0.762	1.026	1.225	1.487	1.684	1.882					
	NOAA14	1 HOUR	0.943	1.270	1.516	1.840	2.084	2.329					
	NOAA14	2 HOUR	1.079	1.431	1.700	2.061	2.334	2.614					
	NOAA14	3 HOUR	1.149	1.497	1.773	2.156	2.458	2.771					
	NOAA14	6 HOUR	1.362	1.730	2.024	2.425	2.737	3.060					
	NOAA14	12 HOUR	1.618	2.035	2.365	2.812	3.155	3.508					
	NOAA14	24 HOUR	1.986	2.582	3.062	3.740	4.283	4.857					

City of Scottsdale Drainage Design Management System PROJECT DEFAULTS

Page 1 3/23/2016 cLblinlets cinlets

Project

Reference REATA WITH DIVERT

Reata Wash Flood Control Improvement Study

Title Location Scottsdale City of Scottsdale Agency

Project Defaults

Model HEC1 Soils Agency FCDMC Land Use Agency FCDMC Rainfall NOAA14 Roads Agency MCDOT Inlets Agency MCDOT

HEC-1 Defaults

Unit Hydrograph Loss Method S-Graph Green-Ampt Duration 24 Hour Tabulation Interval No. Ordinates 2000 5 Output

Comments

Appendix B HEC-1 Models

* U.S. ARMY CORPS OF ENGINEERS * HYDROLOGIC ENGINEERING CENTER * 609 SECOND STREET * DAVIS, CALIFORNIA 95616 * (916) 756-1104 * *

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT? VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE: GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

```
HEC-1 INPUT
                                                                                                                         PAGE 1
LINE
                 ID.....1...2....3....4....5....6.....7....8....9....10
                              City of Scottsdale
REATA - Reata Wash Flood Control Improvement Study
   1
                  ID
                  ID
                              100 YEAR
   4
                  ID
                              24 Hour Storm
                              Unit Hydrograph: S-Graph
                  ID
                  ID
                              Storm: Multiple
                  ID
                              02/23/2016
                       City of Scottsdale
   8
                  ID
                        REATA - Reata Wash Flood Control Improvement Study
                  ID
                       100 YEAR
24 Hour Storm
  10
                  ID
ID
  11
  12
                  ID
                       Unit Hydrograph: S-Graph
                       Storm: Multiple
03/10/2015
  13
                  ID
  14
                  ID
  15
                  ID
                        Flood Control District of Maricopa County
  16
                  ID
                        REATA
                        100 YEAR
  17
                  TD
                        24 Hour Storm
  18
                  ID
  19
                  ID
                        Unit Hydrograph: S-Graph
  20
                  TD
                        Storm: Single
  21
                        02/13/2015
                  ID
  22
                  ID
                        * CROSSROADS EAST HEC-1 MODEL (BASINS 1-33), OUTFALL REATA PASS
  23
24
                  ID
                       * FILE NAME: 100-24NORTH.IH1
                                                            LAV (01/23/12)
                  ID
  25
                  ID
                       * 100-Year, 24-Hour Storm, S-Graph, NOAA 14 Rainfall.

* HC CARDS INCLUDE TOTAL CONTRIBUTING AREA TO EACH CONCENTRATION POINT
  26
27
                  ID
                  ID
  28
                       * EXISTING RETENTION PROVIDED BY ECHO RIDGE SUBDIVISION INCLUDED IN MODEL
                       AND TAKEN FROM TROON NORTH PARK DRAINAGE REPORT.
* FUTURE CONDITIONS DETENTION BASIN FOR TROON NORTH PARK. DRAINAGE
  29
                  TD
  30
                  TD
                       REPORT PREPARED BY ARGUS CONSULTING (APRIL 23, 2010). NEW PARK BASIN AND EXISTING FCD BASIN MODELED TOGETHER AS STAGE-STORAGE-DISCHARGE.

* EXISTING SEDIMENT BASIN AT HAPPY VALLEY ROAD AND ALAMEDA ROAD MODELED
  31
  32
                  ID
  33
                  ID
  34
                  ID
                       AS STAGE STORAGE DISCHARGE.
                  ID
*DIAGRAM
  35
  36
                  IT
                            3
                               1JAN99
                                               0
                                                     2000
  37
                  IO
  38
                  IN
                           15
  39
                  JD
                       4.857
                                0.0001
                                                              0.011
                                           0.005
                                                                                 0-017
                                                                                                              0.026
  40
                  PC
                       0.000
                                 0.002
                                                    0.008
                                                                       0.014
                                                                                           0.020
                                                                                                    0.023
                  PC
                       0.029
                                           0.035
                                                    0.038
                                                              0.041
                                                                        0.044
                                                                                 0.048
                                                                                           0.052
                                                                                                    0.056
  41
                                 0.032
                                                                                                              0.060
  42
                  PC
PC
                        0.064
                                 0.068
                                           0.072
                                                    0.076
                                                              0.080
                                                                        0.085
                                                                                 0.090
                                                                                           0.095
                                                                                                    0.100
                                                                                                              0.105
  43
                       0.110
                                 0.115
                                           0.120
                                                    0.126
                                                              0.133
                                                                        0.140
                                                                                 0 147
                                                                                           0 155
                                                                                                    0.163
                                                                                                              0.172
  44
                 PC
                                                                        0.257
                       0.181
                                           0.203
                                                    0.218
                                                              0.236
                                                                                 0.283
                                                                                           0.387
                                                                                                    0.663
                                                                                                              0.707
                                 0.191
  45
                  PC
                        0.735
                                 0.758
                                           0.776
                                                    0.791
                                                              0.804
                                                                        0.815
                                                                                 0.825
                                                                                           0.834
                                                                                                    0.842
                                                                                                              0.849
  46
                  PC
PC
                       0.856
                                 0.863
                                           0.869
                                                    0.875
                                                              0.881
                                                                        0.887
                                                                                 0.893
                                                                                           0.898
                                                                                                    0.903
                                                                                                              998
  47
                       0.913
                                 0.918
                                           0.922
                                                    0.926
                                                              0.930
                                                                        0.934
                                                                                 0.938
                                                                                           0.942
                                                                                                    0.946
                                                                                                              0.950
  48
                  PC
                        0.953
                                 0.956
                                           0.959
                                                    0.962
                                                              0.965
                                                                        0.968
                                                                                 0.971
                                                                                           0.974
                                                                                                              0.980
  49
                  PC
                       0.983
                                 0.986
                                           0.989
                                                    0.992
                                                              0.995
                                                                       0.998
                                                                                 1.000
                  JD
                       4.833
                                   1.0
5.0
  50
  51
                  JD
                       4.736
  52
                  1D
                       4.614
                                  10.0
  53
                  JD.
                       4.459
                                  20.0
                     24-Hour Storm (S-Graph)
```

PAGE 2

```
HEC-1 INPUT
LINE
                 ID......1.....2.....3.....4.....5.....6.....7.....8.....9......10
                          01
                               BASIN
  55
56
                      0.159
                 BA
                                                              10
                 LG
                       0.29
                                 0.25
                                          6.00
                                                   0.19
  57
                 UI
                                   38
                                           132
                                                    251
                                                              360
                                                                      321
                                                                                         174
                                                                                                  136
  58
                 UI
                          82
                                   57
                                            45
                                                     35
                                                              28
                                                                        19
                                                                                 19
                                                                                           8
  59
                UI
                                             0
                                                      0
                                                                        0
                                                                                           0
                                                                                                             0
                           7
                                                               0
                                                                                  0
                                                                                                    0
  60
                                                                         0
                                                                                  0
                                                                                           0
                 UI
  61
                UI
*
                           0
                                    0
                                             0
                                                      0
                                                                0
                                                                         0
                                                                                  0
                                                                                           0
                                                                                                    0
                                                                                                             0
                        RET1 STORAGE
                      LOCAL RETENTION IN SUBBASIN SUB1. (LP002+LPC001)
SV,SE & SQ DERIVED FROM INFORMATION PROVIDED WITHIN TROON NORTH PARK
  63
64
                 KM
                 KM
                      DRAINAGE REPORT PREPARED BY ARGUS CONSULTING (4/23/10).
  66
67
68
                 KO
RS
SV
                                          0.03
                                                   0.12
                                                           0.25 0.25
                                 0.01
                 SQ
SE
*
                                                          90.00 1000.00
  69
                                 5.00
                                        15.00 30.00
  70
 71
72
73
74
75
                 KK
                        RT1
                               ROUTE
                      ROUTE FLOW FROM SUB1 TO CP2
                 KM
                 RS
                                 FLOW
                                        0.055 1133 0.0228 0.00
37.00 134.00 193.00 240.00 276.00 303.00
                 RC
                      0.055
                               0.040
                 RX
                       0.00
                               24.00
  76
                     2670.0 2668.00 2666.00 2664.00 2664.00 2668.00 2672.00 2676.00
  77
                               BASIN
  78
79
                BA
                      0.140
                       0.26
                                 0.25
                                          6.00
                                                   0.21
                                                              26
                LG
  80
                 UI
                                   78
                                           292
                                                              305
  81
82
                UI
UI
                          28
                                   20
                                            10
                                                     10
                                                              10
                                                                        0
                                                                                  0
                                                                                          0
                                                                                                    0
                                                                                                             0
                           0
                                    0
                                             0
                                                      0
                                                               0
  83
                 UI
                                                                                  0
                                                                                           0
                UI
*
  84
                           ø
                                    0
                                             ø
                                                      ø
                                                               0
                                                                                  0
                                                                                           0
                                                                                                    0
                                                                                                             0
                                                                                                                   PAGE 3
LINE
                ID......1......2......3......4......5......6.......7.....8......9.....10
  85
                       RET2 STORAGE
                      LOCAL RETENTION IN SUBBASIN SUB2. (LPC007, LPC005, LPC006, LPC009
  86
                KM
                      LPC012, LPC013, & LPC014)

SV,SE & SQ DERIVED FROM INFORMATION PROVIDED WITHIN TROON NORTH PARK
DRAINAGE REPORT PREPARED BY ARGUS CONSULTING (4/23/10).
  88
                KM
  89
                 KM
  91
                RS
                                STOR
  92
                SV
                                 0.02
                                         0.12
                                                  0.42
                                                           1.14
                                                                    2.53
                                                                             2.97
                                        18.00 30.00 38.00 45.00 51.00 1000.00
                                 6.00
                    1000.0 1001.00 1002.00 1003.00 1004.00 1005.00 1006.00 1006.10
  95
                        CP2 COMBINE
                      CP LOCATED ALONG DYNAMITE ROAD, 440 FEET WEST OF ALMA SCHOOL ROAD.
  96
                KM
  97
                      Combines RT1 and SUB2
                 KM
  98
 99
                        RT2
                               ROUTE
 100
                KM
                      ROUTE FLOW FROM CP2 TO CP5
1 FLOW
 101
                RS
 102
                               0.035
                                        0.045
                                                  2221 0.0218
103
                RX
                     0.00 39.00 53.00 61.00 71.00 74.00 84.00 106.00 2634.0 2633.00 2632.00 2629.80 2629.80 2632.00 2636.00 2636.40
104
                RY
*
105
                               BASTN
 106
                ВА
                      0.145
 107
                LG
                       0.19
                                                   0.22
 108
                UI
                          0
                                  107
                                           387
                                                    531
                                                             305
0
                                                                      201
                                                                               129
                                                                                         78
                                                                                                   52
                                                                                                            31
                UI
                                                      0
 109
                          19
                                   11
                                           11
 110
                UI
                           0
                                                      0
                                                               0
                                                                        0
```

```
111
                            UT
              112
                            UI
*
              113
                            KK
                                   RET5 STORAGE
                                 LOCAL RETENTION IN SUBBASIN SUBS. (LP016)
              114
                             KM
                                 SV,SE & SQ DERIVED FROM INFORMATION PROVIDED WITHIN TROON NORTH PARK
DRAINAGE REPORT PREPARED BY ARGUS CONSULTING (4/23/10).
              115
              116
                             KM
                             KO
              117
              118
                                     1 STOR
                                                         HEC-1 INPUT
1
                                                                                                                    PAGE 4
             LINE
                            ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
              119
                                                  1.48
                                                185.00 1000.00
                                1000.0 1001.00 1002.00 1002.10
              121
              122
                                   CP5 COMBINE
                                 CP LOCATED AT CULVERT UNDER ALMA SCHOOL ROAD, 1400 FEET NORTHEAST OF PINNACLE VISTA DRIVE. DISCHARGES TO TROON NORTH PARK.
              123
                             KM
              124
              125
                             KM
                                 Combines RT2 and SUB5
              126
                            HC
*
                            *
                                         ROUTE
              127
              128
                                 ROUTE FLOW FROM CP5 TO CP6
                            KM
              129
                                           FLOW
                                                          1481 0.0187 0.00
28.00 52.00 64.00
                                                0.045 1481
20.00 28.00
              130
                            RC
                                 0.045
                                         0.035
                            RX
                                   0.00
                                         10.00
                                                                                  88.00 96.00
              131
                                 2616.0 2614.00 2612.00 2610.00 2610.00 2612.00 2612.00 2614.00
                                 CP LOCATED ALONG DYNAMITE ROAD, 410 FEET EAST OF 114TH STREET.
              134
                            KM
                                 0.124
              135
                            BA
              136
                            LG
                                   0.29
                                                                                                              26
0
0
              137
                            UI
                                            94
                                                    339
                                                            454
                                                                     260
              138
                            UI
                                    15
                                            10
                                                     10
                                                              0
                                                                      0
                                                                              0
                                                                                      0
                                                                                              0
                                                                                                       0
              139
                                             0
                                                      0
                                                              0
                                                                              0
                                                                                      0
                                                                                              0
                            UI
                                     0
              140
                            UI
                                      0
                                              0
                                                      0
                                                              0
                                                                      0
                                                                               0
                                                                                       0
                                                                                               0
                                                                                               0
              141
                            UI
                                      0
                                             0
                                                      0
                                                              0
                                                                      0
                                                                              0
                                                                                      0
              142
                            KK
                                  RET4 STORAGE
                                 LOCAL RETENTION IN SUBBASIN SUB4. (LP026, LP028, LP030 & LPC029)
              143
                            KM
                                     SV, SE & SQ DERIVED FROM INFORMATION PROVIDED WITHIN TROOM NORTH PARK
                                 DRAINAGE REPORT PREPARED BY ARGUS CONSULTING (4/23/10).
              145
                            KM
              146
                            КО
              147
                                                        0.93 1.25
26.00 31.00
                                                                        1.39
35.00
              148
                            SV
                                           0.21
                                                  0.52
                                                                                  1.51
                                                                                           1.51
                                                                                 38.00 1000.00
              149
                             SO
                                         13.00
                                                 20.00
                                1000.0 1001.00 1002.00 1003.00 1004.00 1005.00 1006.00 1006.10
                                                           HEC-1 INPUT
                                                                                                                 PAGE 5
  1
             LINE
                            ID.....1....2.....3.....4.....5.....6.....7....8.....9.....10
              151
                                   RT4 ROUTE
              152
                                 ROUTE FLOW FROM SUB4 TO CP7
                            KM
              153
                                           FLOW
                            RS
                                154
              155
                            RX
              156
                                         BASIN
              157
                                    09
              158
                            ВА
              159
                            LG
                                   0.30
                                           0.25
                                                   6.00
                            UT
                                                            340
                                                                            185
              160
                                      0
                                            51
                                                    193
                                                                    274
                                                                                    134
                                                                                                              44
              161
                            UI
                                     31
                                            20
                                                     16
                                                                                                               0
              162
                            UI
                                      0
                                             0
                                                      0
                                                                                      0
                                                                                               0
                                                                                                      0
                                                                                                               0
              163
                            DT
                                      a
                                              a
                                                      a
                                                              a
                                                                              a
                                                                                      0
                            UI
                                                              0
```

```
165
                         07
                               BASTN
 166
                 ВА
                      0.124
 167
                 LG
                       0.26
                                0.25
                                         6.00
                                                  0.21
                                                             32
                                                                                                          47
 168
                UI
                           0
                                  55
                                          210
                                                   370
                                                             298
                                                                     202
                                                                              146
                                   22
 169
                 UI
                                           18
                                                     8
                                                                       8
                                                                                                           000
 170
                 UI
                           0
                                   0
                                            0
                                                      0
                                                               0
                                                                        0
                                                                                0
 171
                UI
                           0
                                   0
                                            0
                                                     0
                                                               0
                                                                       0
                                                                                0
                                                                                         0
                UI
*
                                    0
                                             0
                                                      0
                                                               0
 172
                           0
                                                                       0
                                                                                0
                                                                                         0
 173
                       RET7 STORAGE
                      LOCAL RETENTION IN SUBBASIN SUB7. (LPC032)
SV,SE & SQ DERIVED FROM INFORMATION PROVIDED WITHIN TROON NORTH PARK
DRAINAGE REPORT PREPARED BY ARGUS CONSULTING (4/23/10).
 174
 175
                 KM
 176
                 KM
 177
 178
                 RS
                           1 STOR
                               0.04 0.14 0.34 0.34
11.00 22.00 46.00 63.00 1000.00
 179
                 SV
 181
                    1000.0 1001.00 1002.00 1003.00 1004.00 1004.10
                                                 HEC-1 INPUT
                                                                                                                 PAGE 6
LINE
                ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
 182
                        CP7 COMBINE
                      DISCHARGES COMBINED FLOW INTO TROON NORTH PARK.
 183
                 KM
 184
                 KM
                      Combines RT4, SUB9 & SUB7
 185
                 HC
*
 186
                        RT7
                               ROUTE
 187
                      ROUTE FLOW FROM CP7 TO CP6
                 KM
 188
                               FLOW
                               0.030
3.00
                                                 2096 0.0191
8.00 27.00
 189
                 RC
                      0.045
                                        0.045
                                                                  30.00
                                                                           32.00
                       0.00
 190
                                         5.00
                 RX
                     2630.0 2628.00 2626.00 2624.00 2624.00 2626.00 2628.00 2630.00
                         03 BASIN
 193
                 KM
                      CP LOCATED ALONG DYNAMITE ROAD, 1600 FEET EAST OF ALMA SCHOOL ROAD.
                      0.149
 194
                 BA
 195
                 LG
                       0.27
 196
                 UI
                                 123
                                          440
                                                                                        74
 197
                                                     a
                                                                                                           0 0
                UT
                         12
                                  12
                                           17
                                                              a
                                                                       0
                                                                                0
                                                                                                  n
                                   0
                                                                        0
                                                                                0
                                                                                         0
 198
                 UI
                          0
                                            0
                                                     0
                                                              0
                                                                                                  0
                 UI
                                            0
                                                                                 0
 200
                UI
*
                           0
                                   0
                                            0
                                                     0
                                                              0
                                                                       0
                                                                                0
                                                                                         0
                                                                                                  0
                       RET3 STORAGE
 201
                      LOCAL RETENTION IN SUBBASIN SUB3. (LP022 & LP023)
 202
                 KM
 203
                         SV, SE & SQ DERIVED FROM INFORMATION PROVIDED WITHIN TROOM NORTH PARK
                      DRAINAGE REPORT PREPARED BY ARGUS CONSULTING (4/23/10).
 204
                 KM
 205
                KO
 206
                 RS
                                               0.59 1.23 1.27 1.36 1.36
80.00 97.00 113.00 127.00 1000.00
 207
                SV
                                0.02
                                         0.18
                 SO
                               15.00
                                        48.00
 208
                     1000.0 1001.00 1002.00 1003.00 1004.00 1005.00 1006.00 1006.10
 209
                        RT3
                               ROUTE
 210
 211
                      ROUTE FLOW FROM SUB3 TO CP6
 212
                 RS
                                FLOM
                               0.035
                                               3622 0.0228 0.00
97.00 104.00 110.00 124.00 136.00
                      0.050
                                        0.050
 213
                RC
 214
                               22.00
                                        94.00
 215
                RY
                     2642.0 2640.00 2638.00 2636.00 2636.00 2638.00 2640.00 2642.00
                                                                                                                 PAGE 7
LINE
                ID......1......2......3......4......5......6......7......8.......9.....10
 216
                       RETG STORAGE
 217
                      LOCAL RETENTION IN SUBBASIN SUB6. (LPC024)
                      SV,SE & SQ DERIVED FROM INFORMATION PROVIDED WITHIN TROON NORTH PARK
DRAINAGE REPORT PREPARED BY ARGUS CONSULTING (4/23/10).
 218
 219
 220
                 КО
```

RS

1

STOR

	1.40 011 /	LO IVIO	201									
222 223 224	SV SQ SE	1000.0	0.22 1001.00			2.28 230.00 1004.00	1000.00					
	* *											
225 226 227 228 229 230 231 232	KK BA LG UI UI UI VI * *	06 0.180 0.22 0 45 0	0.24 85 29 0	6.16 324 21 0 0	0.21 573 12 0 0	33 413 12 0 0	289 12 0 0	203 0 0	0	94 0 0	67 0 0 0	
233 234 235	* KK KM HC * * * *		COMBINE nes RT5,	RT7, RT	8 & SUB6							
236 237 238 239 240 241	KK KM RS RC RX RY *	0.050 0.00	ROUTE FLOW FRO FLOW 0.035 19.00 2558.00	0.050 82.00	3706 107.00		144.00	160.00 2560.00				
242 243 244 245 246 247	KK BA LG UI UI UI	11 0.174 0.30 0 44 0	0.25 81	6.00 307 22 0	0.19 543 11 0 HEC=1	5 405 11 0 L ÎNPUT	281 11 0	198 0 0	136 0 0	93 0 0	66 Ø Ø	PAGE 8
LINE	ID.	1	2	3	4.	5	6	7	8.	9.	10	
248 249	UI * * * *	0		0			0	9		0	0	
250 251 252 253 254 255	KM RS RC RX	0.045 0.00	FLOW FRO	0.045 82.00	5219 107.00	117.00		160.00 2560.00				
256 257 258	KK KM KM	PINNA	BASIN CATED ALC CLE VISTA		SCHOOL F	ROAD, 450) FEET N	ORTHEAST	OF			
259 260 261 262 263 264 265	BA LG UI UI UI * * *	0.134 0.23 0 33 0 0	0.27 65 22 0 0	6.00 246 14 0 0	0.21 434 9 0 0	26 303 9 0 0	214 9 0 0	149 0 0 0	104 0 0 0 0	68 0 0 0	48 0 0 0	
266 267 268 269 270 271	KK KM RS RC RX RY *	0.050 0.00	FLOW FRO	0.050 28.00	3543 48.00	0.0233 57.00 2596.00	66.00		97.00 2602.00			
272 273 274 275 276	KK B A LG UI UI	10 0.462 0.25 0 192	BASIN 0.26 123 143	5.85 489 108	0.22 851 82	26 1246 59	796 48	617 23	480 23	343 23	272 23	

Page 6 of 36

```
328
                     CP13 COMBINE
                    CP LOCATED EAST OF ALMA SCHOOL ROAD IN NATURAL WASH ADJACENT TO
 329
               KM
 330
               KM
 331
               KM
                    Combines RT10, RT12 & SUB13
 332
               HC
 333
               KK
                     RT13 ROUTE
 334
               KM
                    ROUTE FLOW FROM CP13 TO CP16
 335
                             FLOW
                                    0.045
                                           3505 0.0273 0.00
52.00 108.00 116.00
                    0 045
                           0.030
 336
               RC
                             4.00
                     0.00
                                     9.00
                                                                   129.00 175.00
 337
               RX
 338
                   2440.0 2438.00 2436.00 2434.00 2434.00 2436.00 2438.00 2440.00
                                             HEC-1 INPUT
                                                                                                       PAGE 11
LINE
               ID.....1....2....3....4.....5....6.....7....8.....9....10
 339
                            BASIN
                    0.521
 340
               BA
               LG
                     0.23
                             0.30
342
343
               UI
                       0
                              109
                                      302
                                               630
                                                       850
                                                                                                32
0
0
               UI
                      297
                              250
                                      197
                                              144
                                                       121
                                                                91
                                                                        78
                                                                                53
                                                                                        53
 344
               UI
                               21
                                       21
                                               21
                                                                 0
                                                                         0
                       21
                                                        21
 345
               UI
                        0
                                0
                                        0
                                                0
                                                         0
                                                                 0
                                                                         0
                                                                                 0
                                                                                         0
                                                                                                  0
 346
               UI
*
                        0
                                0
                                        0
                                                        0
                                                                 0
                                                                         0
                                                                                 0
 347
                     CP16 COMBINE
                    CP LOCATED AT HAPPY VALLEY ROAD, 650 FEET EAST OF ALMA SCHOOL ROAD.
 348
               KM
                    Combines RT13 & SUB16
               HC
*
350
351
352
                            ROUTE
                     RT16
                    ROUTE FLOW FROM CP16 TO CP22
               KM
 353
                            FLOW
               RS
                            0.035 0.050 6229 0.0295 0.00
53.00 192.00 205.00 214.00 229.00 353.00 491.00
 354
                    0.050
 355
               RX
                     0.00
                   2260.0 2258.00 2256.00 2254.00 2254.00 2256.00 2258.00 2260.00
 356
 357
                       29
                          BASIN
                    CP LOCATED ALONG ALAMEDA ROAD AT 121ST PLACE.
 359
               BA
                    0.151
 360
               LG
                     0.30
 361
                               75
               UI
                                                                               116
                                                                                                 52
                                                                                                 0 0 0
                               25
Ø
                                                                                         0 0
 362
               UI
                       36
                                       14
                                               10
                                                       10
                                                               10
                                                                         0
                                                                                 0
 363
               UT
                       0
                                        0
                                                0
                                                                 0
                                                                         0
                                                         0
               UI
 365
               UI
                        0
                                0
                                        0
                                                0
                                                         0
                                                                 0
366
                    RT29
                            ROUTE
367
                    ROUTE FLOW FROM SUB29 TO CP21
               KM
 368
                             FLOW
               RS
                                            1372 0.0345 0.00
48.00 56.00 58.00
                    0.050
 369
               RC
                            0.035
                                    0.050
                            2.00
                                                                    75-00 101-00
370
               RX
                     0.00
                                    41.00
                                           48.00
                   2688.0 2686.00 2684.00 2683.20 2683.20 2684.00 2686.00 2690.00
371
               RY
                                             HEC-1 INPUT
                                                                                                      PAGE 12
LINE
               ID......1......3.....4......5.....6.....7.....8.....9.....10
                            BASIN
 373
               BA
                    0.129
 374
               LG
UI
                             0.25
                                     6.00
                     0.30
                                              0.19
 375
                              116
                                      414
                                              466
                                                               159
 376
               UI
UI
                       11
                               11
                                        0
                                                0
                                                        0
                                                                 0
                                                                         0
                                                                                 0
                                                                                         0
                                                                                                 0
 377
                        a
                                a
                                        a
                                                         0
                                                                                 n
 378
               ÜΪ
 379
               UI
                        0
                                        0
                                                 0
                                                         0
                                                                 0
                                                                                         0
                                                                                                 0
```

```
CP LOCATED ADJACENT TO PARKVIEW LANE, 650 FEET NORTH OF ALAMEDA ROAD.
 381
               KM
                    Combines RT29 & SUB21
 382
               KM
 383
               HC
*
 384
                     RT21
                            ROUTE
 385
               KM
                    ROUTE FLOW FROM SUB21 TO CP20
 386
                             FLOW
               RS
                        1
                                              2993 0.0349
 387
               RC
                            0.030
                                                               0.00
 388
               RX
                     0.00
                              5.00
                                     67.00
                                            74.00
                                                      90.00
                                                             96.00 162.00 170.00
                   2618.4 2618.00 2616.00 2614.00 2614.00 2616.00 2618.00 2620.00
 389
               RY
 390
                       15 BASIN
                    CONCENTRATES IN NATURAL WASH ADJACENT TO HAPPY VALLEY ROAD, 2400 FEET
 391
               KM
                    NORTHEAST OF ALAMEDA ROAD.
 393
               BA
                    0.700
 394
               16
                     0.29
 395
               UI
                               172
                                       632
                                              1159
                                                       1722
                                                                                                 424
 396
               UI
                      342
                               240
                                       193
                                               138
                                                        107
                                                                 84
                                                                         65
                                                                                  33
                                                                                          33
                                                                                                   33
 397
               OT
                      33
                               33
                                         0
                                                 a
                                                          a
                                                                  a
                                                                          a
                                                                                  Ø
                                                                                           0
                                                                                                    n
               UI
                                                          0
                                                                                   0
 399
               UI
*
                        0
                                 0
                                         0
                                                  0
                                                          0
                                                                                                    0
 400
                     RT15
                            ROUTE
                    ROUTE FLOW FROM SUB15 TO CP20
1 FLOW
 401
               KM
 402
               RS
 403
               RĊ
                    0.045
                            0.030
                                     0.045
                                              2462 0.0285
                                            12.00
 404
               RX
                   0.00 4.00 8.00 12.00 57.00 65.00 69.00 117.00 2600.0 2598.00 2596.00 2594.00 2596.00 2598.00 2600.00
405
               RY
*
                                              HEC-1 INPUT
                                                                                                        PAGE 13
LINE
               ID.....1....2....3....4....5.....6....7....8....9....10
                       18
                            BASIN
407
               KM
                    CONCENTRATES AT HAPPY VALLEY ROAD, ACROSS FROM THE ALAMEDA BASIN.
408
               BA
                    0.141
409
               LG
                     0.25
                                                                                 125
8
                                                                                                  63
 410
               UI
                               51
                                       196
                                                333
                                33
                                                                                           P
411
               LIT
                       48
                                        23
                                                70
                                                         8
                                                                  8
                                                                          8
                                                                                                    0 0
               UI
                                                                  0
                                                                          0
                                                                                   0
412
                        0
                                0
                                         0
                                                 0
                                                          0
                                                                                           0
413
               UI
414
               UI
                        0
                                 0
                                         0
                                                 0
                                                          0
                                                                          0
                                                                                   0
                                                                                           0
415
               KK
                            BASIN
                       20
416
                    0.264
               BA
 417
                     0.27
               LG
418
               UI
                        a
                               111
                                       420
                                               729
                                                        672
                                                                433
                                                                        318
                                                                                 215
                                                                                         160
                                                                                                 103
419
               UI
                       76
                               53
                                        41
                                                21
                                                         16
                                                                 16
                                                                         16
                                                                                   0
                                                                                           0
                                                                                                   0
               UI
                                         0
                                                                  0
420
                        0
                                0
                                                 0
                                                                          0
                                                                                                    0
 421
               UI
                        0
                                 0
                                                  0
               UI
                                                                                                   0
422
                        0
                                 0
                                         0
                                                 0
                                                          0
                                                                          0
                                                                                   0
                                                                                           0
423
                     CP20 COMBINE
424
               KM
                    CP AT ALAMEDA BASIN, HAPPY VALLEY ROAD AND ALAMEDA ROAD.
 425
               KM
                    Combines RT21, RT15, SUB18 & SUB20
426
               HC
                        4
427
                    DET20 STORAGE
                    EXISTING DETENTION BASIN AT ALAMEDA & HAPPY VALLEY ROAD (2-10'X3' CBCs)
               KM
428
                    VOLUME DETERMINED FROM CONTOURS. DISCHARGE DETERMINED FROM
                    CULVERT AND WEIR CALCULATIONS. REFERENCE - EEC REPORT (MARCH 1998)
 430
               KM
431
               KO
               RS
 433
               SV
                           0.64 3.20 7.14 7.14
220.00 443.00 664.00 886.0010000.00
434
               SO
                   2552.0 2554.00 2556.00 2558.00 2560.00 2560.10
```

i						HEC-	1 INPUT						PAGE 14
	LINE	ID.	1.	2	3	4	5	6	7	8 .	9	10	
	436 437 438 439 440 441 442 443	KK BA LG UI UI UI UI * *	33 0.176 0.25 0 47 0	BASIN 0.33 79 31 0 0	5.85 297 25 0	0.17 526 11 0 0	424 11 0 0	286 11 0 0		0	99 0 0 0	67 0 0 0	
	444 445 446 447 448 449	KK KM RS RC RX RY *	0.050 0.00	FLOW 0.035 33.00	0.050 72.00	3766 109.00	0.0472			313.00 2760.00			
	450 451 452 453 454 455 456 457	* KK BA LG UI UI UI UI * * *	27 0.108 0.28 0 32 0 0	BASIN 0.28 44 23 0 0	5.58 165 16 0 0	0.23 284 11 0 0	282 6 0		6 0		67 0 0 0	44 0 0 0	
	458 459 460 461 462 463 464 465	KK BA LG UI UI UI UI * *	28 0.167 0.30 0 57 0 0	BASIN 0.23 56 43 0	6.16 215 31 0	0.18 366 23 0 0	462 16 0 0	278 9 0 0	215 9 0 0	156 9 0 0	114 9 0 0	84 0 0 0	
I	vete						1 INPUT						PAGE 15
	466 467 468 469 470	ID. KK KM KM KM HC * *	CP28 CP IN VALLEY	COMBINE NATURAL ROAD.		JACENT TO				T EAST OF	нарру	10	
	471 472 473 474 475 476	KK KM RS RC RX RY * *	0.045 0.00	FLOW FRO FLOW 0.030 11.00	0.045 27.00	2234 49.00	0.0368 81.00 2574.00	98.00		197.00 2578.00			
	477 478 479 480 481 482 483 484	KK BA LG UI UI UI UI ** *	26 0.063 0.27 0 11 0 0	BASIN 0.32 38 7 0	5.24 140 4 0	0.24 223 4 0 0	136 4 0 0	96 0 0 0	0	42 0 0 0	27 0 0 0	18 0 0 0	
	485 486 487 488 489	KK KM KM KM HC *	CP LOC BASIN.				AD AND A	.ameda Ro	DAD, AT	OUTLET OF	ALAMEDA		

```
ROUTE
                                ROUTE FLOW FROM CP26 TO CP19
1 FLOW
             491
                           KM
             492
                           RS
             493
                                        0.035
                                                         1139 0.0308
                           RC
                               0.00 25.00 40.00 54.00 90.00 102.00 130.00 165.00 2545.0 2544.00 2542.00 2540.00 2540.00 2542.00 2544.00 2550.00
             494
                           RX
             495
1
                                                          HEC-1 INPUT
                                                                                                                   PAGE 16
            LINE
                           ID.....1....2....3....4.....5....6....7....8....9....10
             496
                                        BASIN
                                   19
             497
                                0.151
                           LG
UI
                                         0.30
98
             498
                                 0.25
                                                  5.85
                                                          0.20
             499
                                                          544
                                                                                                             39
                                                                           224
                                                   359
                                                                   322
             500
                                   28
                                           12
                                                   11
                                                            11
                                                                             0
                                                                                                              0 0 0
             501
                           UI
UI
                                    0
                                            0
                                                    0
                                                            0
                                                                     0
                                                                             0
                                                                                     0
                                                                                             a
                                                                                                      0
             502
                                                    0
                                                             0
                                                                             0
                                                                                             0
                                                                                                      0
                                    0
                                                                     0
                                                                                     0
                           UI
                                    0
             504
             505
                           KM
                                CP LOCATED ALONG HAPPY VALLEY ROAD, 1100 FEET WEST OF ALAMEDA ROAD.
             506
                           KM
                                Combines RT26 & SUB19
             507
                           HC
             508
                           KK
                                 RT19
                                        ROUTE
             509
                           KM
                                ROUTE FLOW FROM CP19 TO CP25
             510
                           RS
                                        FLOW
0.035
                           RC
                                0.055
                                                0.055
                                                         3337 0.0347
             511
                                                                          0.00
                           RX
                                 0.00
                                        13.00
                                                31.00 46.00 82.00 100.00 123.00 155.00
            513
                           RY
*
                               2508.0 2504.00 2498.00 2496.00 2496.00 2500.00 2504.00 2508.00
             514
                                        BASIN
                                0.441
             515
                           BA
             516
                           LĠ
                                 0.24
                                         0.33
             517
                           UI
                                                   390
                                                                  1067
                                  219
                                                                                                             21
0
0
                           DT
                                                            89
                                                                                    44
                                                                                            21
0
                                                                                                    21
            518
                                          153
                                                   122
                                                                    70
                                                                            53
                           UI
                                           21
                                                    0
                                                            0
                                                                     0
                                                                             0
                                                                                     0
             519
                                   21
             520
                           UI
                                            0
                                                                                                      0
                                    a
            521
                           UI
                                            0
                                                            a
                                                                                                      0
            522
                                 RT32
                                        ROUTE
             523
                                ROUTE FLOW FROM SUB32 TO CP31
                           KM
                           RS
                                0.055
                                                0.055
                                                         5296 0.0517
             525
                           RC
                                       0.040
                                                                         0.00
                                                                        94.00 112.00 127.00
             526
                           RX
                                 0.00
                                        25.00
                                                69.00
                                                        77.00 89.00
                               2460.0 2444.00 2442.00 2438.00 2438.00 2440.00 2450.00 2460.00
1
                                                         HEC-1 INPUT
                                                                                                                   PAGE 17
           LINE
                           ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
            528
                                   31
                                        BASIN
             529
                           BA
                                0.496
             530
                                                  4.33
                           LG
                                 0.26
                                         0.32
                                                          0.37
             531
                           UI
                                          101
                                                   265
                                                          561
                                                                          1091
                                                                                                            389
                                  298
                                                          147
             532
                           UI
                                          241
                                                  201
                                                                   119
                                                                            99
                                                                                    77
                                                                                            58
                                                                                                     49
                                                                                                            47
                           UI
                                           19
                                                                            19
                                                                                     0
                                                                                             0
                                                                                                              0
                                                           19
                                                                                                      0
             533
                                   19
                                                   19
                                                                    19
                           UI
                                                            0
             535
                           UI.
                                    0
                                            0
                                                    0
                                                             0
                                                                     0
                                                                             0
                                                                                             0
                                                                                                      0
                                                                                                              0
             536
                           KK
                                 CP31 COMBINE
                                Combines RT32 & SUB31
                           KM
             537
                           HC
                                       ROUTE
             540
                                ROUTE FLOW FROM CP31 TO CP25
```

```
541
542
                                            FLOW
                             RC
                                  0.055
                                           0.035
                                                   0.055
                                                             599 0.0256
                                                                             0.00
               543
                              RX
                                    0.00
                                           12.00
                                                   22.00
                                                           45.00 110.00 147.00
               544
                             RY
                                  2420.0 2414.00 2410.00 2408.00 2408.00 2410.00 2414.00 2420.00
               545
546
                                     25
                                           BASIN
                                   0.274
                             BA
               547
                                   0.25
                                            0.31
                                                    5.05
                                                             0.27
                             LG
                                                                       14
               548
549
                             UI
                                              57
                                                     159
                                                              331
                                                                      447
                                                                              617
                                                                                       388
                                                                                               313
                                                                                                       259
                                                                                                                209
                                     156
                                                     104
                                                              76
11
                             UI
                                             131
                                                                       64
                                                                               48
                                                                                        41
                                                                                                28
                                                                                                        28
                                                                                                                17
               550
                             UI
                                     11
                                              11
                                                      11
                                                                       11
                                                                                0
                                                                                         0
                                                                                                                 0
                                                                                                 0
                                                                                                         0
               551
                             UI
                                               0
                             UI
*
               552
                                       0
                                               0
                                                       0
                                                               a
                                                                        0
                                                                                0
                                                                                         0
                                                                                                 0
                                                                                                         0
                                                                                                                  0
               553
554
                                   CP25 COMBINE
                                  CP IN NATURAL WASH AT BASE OF MOUNTAINS, LOCATED 1230 FEET WEST OF 112TH PLACE AND ABOUT 1600 FEET SOUTH OF HAPPY VALLEY ROAD.
                             KM
               555
               556
                             KM
                                  Combines RT19, RT31 & SUB25
               557
                             HC
*
  1
                                                             HEC-1 INPUT
                                                                                                                       PAGE 18
              LINE
                             ID.....1....2.....3.....4.....5,....6.....7....8.....9....10
               558
                                    RT25
                                           ROUTE
               559
560
                              KM
                                   ROUTE FLOW FROM CP25 TO CP24
                             RS
                                            FLOW
                                           74.00 105.00 368.00 415.00 422.00 428.00 520.00
               561
                             RC
                                  0.050
               562
                             RX
                                   0.00
               563
                             RY
*
                                 2330.0 2308.00 2306.00 2304.00 2306.00 2308.00 2340.00
              564
                                           BASIN
               565
                                  0.380
                             BA
               566
                             LG
                                    0.27
                                            0.29
                                                             0.32
                             UI
                                                             351
145
                                                                      494
108
                                                                              654
87
                                                                                                                316
34
               567
                                                     158
                                                                                      691
                                                                                               443
                                                                                                       375
                                     263
                                                                                                56
               568
                                             203
                                                     168
                                                                                        77
                                                                                                        52
                              UI
                                              29
                                                      13
                                                              13
                                                                      13
                                                                               13
                                                                                        13
                                                                                                13
                                                                                                        13
                                                                                                                  0
               569
                                     34
               570
                             UI
                                               0
                                                       0
                                                               0
                                                                                0
                                                                                         0
                                                                                                 0
                                                                                                                  0
                             UI
                                       0
                                                       0
              571
                                               0
                                                               0
                                                                        0
                                                                                         0
                                                                                                         0
               572
                                   CP24 COMBINE
               573
                                  CP LOCATED AT CONFLUENCE OF MULTIPLE WASHES APPROXIMATELY 1500 FEET
                             KM
                                   UPSTREAM OF PINNACLE PEAK ROAD BRIDGE (REATA PASS WASH).
               575
                             KM
                                  Combines RT25 & SUB24
                             HC
               576
              577
                             KK
                                     17
                                         BASIN
                                  CONCENTRATES FLOWS ALONG HAPPY VALLEY ROAD, BETWEEN WINDY WALK DRIVE AND
               578
                             KM
               579
                             KM
                                  WHISPERING RIDGE WAY.
               580
                                  0.324
                             BA
               581
                             LG
                                   0.25
                                            0.28
                                                             0.16
               582
                             UI
                                       a
                                             259
                                                     933
                                                            1186
                                                                      675
                                                                              428
                                                                                      276
                                                                                               163
                                                                                                       102
                                                                                                                67
               583
                             UI
                                                                                                         0
                                     31
                                              26
                                                      26
                                                               0
                                                                        0
                                                                                0
                                                                                         0
                                                                                                 0
                                                                                                                 0
                             UI
                                               0
                                                       0
                                                                                0
                                                                                                 0
                                                                                                         0
               584
                                       0
                                                               0
                                                                                         0
               585
                             UI
                                               0
                                                                0
                                                                        0
                                                                                         0
                                                                                                 0
                                                                                                         0
                                                                                                                  0
               586
                             UI
                                       0
                                               0
                                                       0
                                                                0
                                                                        0
                                                                                0
                                                                                         0
                                                                                                 0
                                                                                                         0
                                                                                                                 0
1
                                                            HEC-1 INPUT
                                                                                                                       PAGE 19
             LINE
                             ID.....1...2....3...4....5....6....7....8...9....10
                                   RT17
                                           ROUTE
               587
               588
                                  ROUTE FLOW FROM SUB17 TO CP23
               589
                             RS
                                      2
                                           FLOW
                                                            5785 0.0365
43.00 50.00
                                          0.040
4.00
                             RC.
                                  0.050
                                                   0.050
                                                                             0.00
               590
               591
                                                   22.00
                                                          43.00
                                                                           64.00
               592
                                  2350.0 2346.00 2342.00 2339.00 2339.00 2342.00 2346.00 2350.00
              593
                             KK
                                     23 BASIN
```

```
594
                     0.279
 595
                LG
                                        7.27
                      0.24
                               0.16
                                                0.12
                                                           16
 596
                UI
                                 66
                                        222
                                                          607
                                                                                     18
 597
               UL
                       146
                                106
                                         80
                                                  64
                                                           50
                                                                   33
                                                                            32
                                                                                              13
                                                                                                      13
                                         13
                                                                    0
 598
                UI
                        13
                                 13
                                                   0
                                                            0
                                                                             0
                                                                                              0
                                                                                                       0
 599
                UI
                                  0
 600
                UI
                         0
                                  0
                                           0
                                                    0
                                                            0
                                                                     0
                                                                             0
                                                                                                       0
 601
               KK
                      CP23 COMBINE
                     CP LOCATED AT CONFLUENCE OF MULTIPLE WASHES APPROXIMATELY 1500 FEET UPSTREAM OF PINNACLE PEAK ROAD BRIDGE (REATA PASS WASH).
 602
                KM
 603
                KM
 604
                KM
                     Combines RT17 & SUB23
 605
               HC
 606
                     CP24A COMBINE
 607
                     Combines CP23 & CP24
                KM
                *
                     RT24A
                             ROUTE
 610
                KM
                     ROUTE FLOW FROM CP24A TO CP22
 611
                RS
                              FLOW
                RC
 612
                             0.030
                                      0.050
                                                1545 0.0306
                             99.00 276.00 292.00 321.00 337.00 650.00 816.00
 613
                      0.00
 614
                RY
*
                    2224.0 2202.00 2200.50 2199.80 2200.00 2201.00 2202.00 2212.00
                                                HEC-1 INPUT
                                                                                                            PAGE 20
               ID......1......2......3......4......5......6.......7......8.......9.....10
LINE
                KK
 615
                        30
                            BASIN
 616
                KM
                     CONCENTRATES FLOW ADJACENT TO MOUNTAIN. DISCHARGES TO REATA PASS WASH
               KM
BA
 617
                     JUST UPSTREAM OF PINNACLE PEAK ROAD BRIDGE.
 618
                     0.392
 619
                LG
                      0.26
                               0.32
                                        4.72
                                                0.29
               UI
                               64
251
                                        115
203
                                                          408
146
                                                                  500
121
                                                                           698
94
                                                                                   534
79
 620
                                                 269
                                                                                            393
                                                                                                     341
                       294
621
                                                 163
                                                                                              70
                                                                                                      53
622
                UI
                                 36
                                         31
                                                  31
                                                           22
                                                                   12
                                                                            12
                                                                                     12
                                                                                             12
                                                                                                      12
                        49
                                                                                     0
                                                                                                       0
                UI
                        12
                                 12
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
                                                                                              0
               UI
*
                                                            0
                                                                             0
                                                                                              0
674
                         0
                                 0
                                                                    0
                KK
625
                        22
                             BASIN
626
                BA
                     0.222
                      0.29
                LG
                                                0.21
                                                 224
77
                                                          309
57
                                                                   430
 628
               UI
                         0
                                 43
                                        103
                                                                           371
                                                                                    256
                                                                                            217
                                                                                                     181
629
               UI
                       146
                                111
                                         97
                                                                                     33
                                                                   49
                                                                            39
                                                                                             23
                                                                                                      21
                Üİ
                        20
                                  8
                                          8
                                                   8
                                                                    8
                                                                                                       0 0
 631
               UI
                         0
                                  0
                                          0
                                                   0
                                                            a
                                                                    a
                                                                             a
                                                                                     0
                                                                                              n
               UI
                         0
                                           0
                                                   0
                                                                                              0
                                                                                                       0
632
                                  0
                                                            0
                                                                    0
                                                                             0
                                                                                      0
633
                      CP22 COMBINE
                     CP AT PINNACLE PEAK WASH BRIDGE JUST UPSTREAM OF REATA PASS WASH APEX.
634
 635
                KM
                     Combines RT16, RT24A, SUB30 & SUB22
636
               HC
               KK
637
                     RT22A
                             ROUTE
                KM
 638
 639
                RS
                               FLOW
                                              1543 0.0246 0.00
90.00 150.00 400.00 1000.00 1020.00
 640
                RC
RX
                     0.055
                             0.040
                                      0.055
641
                      0.00
                                      40.00
                    2122.0 2122.00 2122.00 2107.00 2114.00 2121.00 2121.00 2124.00
                      D22A DIVERT
 644
               KM
645
               DT
                     DT22A
                                0.0
                                     2000.0
                DI
                             500.0
                                     1000.0 2000.0 4000.0 8000.0 16000.0
                       0.0
 647
               DQ
                       0.0
                              96.0
                                      192.0
                                              384.0 768.0 1537.0 3200.0
                                                                                            0.0
                                                                                                     0.0
```

```
HEC-1 INPUT
                                                                                                                PAGE 21
LINE
                ID.....1....2.....3.....4.....5.....6.....7....8.....9.....10
 648
649
                      RT22B ROUTE
                KM
 650
                 RS
                                FLOW
                     0.055 0.040 0.055 1803 0.0329 0.00
0.00 10.00 40.00 90.00 150.00 400.00 1000.00 1020.00
2122.0 2122.00 2122.00 2107.00 2114.00 2121.00 2121.00 2124.00
 651
                 RC
 652
                RX
 653
 654
                KK
                         58
                               BASIN
 655
656
                      0.112
                BA
                                         5.85
 657
658
                UI
UI
                          a
                                 101
                                          360
                                                   405
                                                            229
                                                                     138
                                                                                                          19
                                  10
                                                     0
                                                                       0
                                                                                0
                                                                                         0
                                                                                                           0
                         10
                                            0
                                                              0
                                                                                                  0
 659
                UI
 660
                UI
                          0
                                   0
                                            0
                                                     0
                                                              0
                                                                       0
                                                                                0
                                                                                        0
                                                                                                           0
               J.
 661
                          0
                                   0
                                                     0
                                                              0
                                                                                0
 662
                       CP58 COMBTNE
 663
                KM
                      CP AT PINNACLE PEAK WASH BRIDGE JUST UPSTREAM OF REATA PASS WASH APEX.
 664
                KM
                      Combines RT16, RT24A, SUB30 & SUB22
 665
                HC
*
 666
667
                KK
                               ROUTE
                       RT58
                KM
 668
 669
                 RC
                     0.055 0.040
160.00 180.00
                                        0.055
                                              3099 0.0276 0.00
340.00 490.00 540.00 1000.00 1100.00
 670
                                      200.00
                RX
                     2100.0 2100.00 2100.00 2030.00 2030.00 2045.00 2045.00 2056.00
                *
 672
                               BASIN
 673
674
                BA
                      0.410
                                0.28
                                         4.33
                LĠ
                       0.28
                                                  0.38
 675
                UI
                          0
                                 253
                                          932
                                                  1461
                                                            878
                                                                     620
 676
                UI
                                  41
                                           29
                                                    29
                                                                       0
                                                                                        0
                                                                                                           0
                UT
                          0
                                                                                0
                                                                                                  0
 677
                                   0
                                            0
                                                     0
                                                              0
                UI
                                                              0
                                                                       0
                                                                                        0
 678
                                                                                0
                UI
                          0
                                                     0
                                                              0
                                                                                                  0
                                                                                                           0
                                                  HEC-1 INPUT
                                                                                                                PAGE 22
                \hbox{\tt ID}.....1....2....3.....4.....5.....6.....7.....8.....9.....10
LINE
 680
                       RT35
                               ROUTE
                      ROUTE FLOW FROM SUB35 TO CP34
 681
                KM
                 RS
                      0.055
                                        0.055
                                                2848 0.0211
69.00 78.00
 683
                RC
                              0.040
                                                                 89.00 129.00 157.00
                       0.00
 684
                RX
                              35.00
                                        58.00
                     2087.0 2085.00 2085.00 2082.00 2082.00 2085.00 2086.00 2087.00
 685
 686
                               BASIN
 687
                ВА
                      0.456
 688
                LG
UI
                       0.28
                                         4.72
                                                  0.31
 689
                                         1060
                                                                     683
                                                                              436
                                 289
                                                  1633
                                                                                       287
                                                                                               189
                                                                                                        120
 690
                UI
                         84
                                  41
                                           33
                                                    33
                                                                       0
                                                                                0
                                                                                                  0
                                                                                                          0 0 0
                                                                                         0
 691
                UI
                          0
                                   a
                                            0
                                                     0
                                                              0
                UI
                                            0
                                                                                                  0
 692
                                                     0
                                                                                         0
                UI
                       CP34 COMBINE
                      WESTERN BOUNDARY - DOWNSTREAM OF PINNACLE PEAK ROAD. DISCHARGE TO
 695
                KM
                      REATA PASS WASH.
Combines RT35 and SUB34
 696
                KM
 697
                 KM
 698
                HC.
 699
                KK.
                       RT34 ROUTE
```

```
ROUTE FLOW FROM SUB35 TO CP34
1 FLOW
 700
 701
                RS
 702
                     0.055
                              0.040
                                                      0.0213
                    160.00 180.00 200.00 340.00 490.00 540.00 1000.00 1100.00 2100.0 2100.00 2100.00 2030.00 2030.00 2045.00 2045.00 2056.00
 703
                RX
 704
                KK
 705
                        38 BASIN
                     WESTERN BOUNDARY - UPSTREAM OF TOMPSON PEAK PARKWAY. DISCHARGE TO
 706
                KM
 707
                KM
                     REATA PASS WASH.
 708
                BA
                     0.057
 709
                LG
                      0.26
 710
                UI
                                122
                                         307
                                                  160
                                                                                                       0
                                                            a
                                                                                      a
                                                                                              a
 711
                UT
                          a
                                  a
                                           9
                                                   a
                                                                    a
                                                                             0
                                                                             0
 712
                UI
                          0
                                  0
                                                   0
                                                            0
                                                                     0
                                                                                      0
                          0
                                                HEC-1 INPUT
                                                                                                             PAGE 23
LINE
                ID.....1.....2.....3.....4......5.....6......7.....8......9.....10
                UI
*
                                               0
 714
                                  0
                                                            0
                                                                    0
                                                                             0
                                                                                              0
                90
 715
                KK
                              BASIN
                        59
 716
                KM
 717
                KM
 718
719
                BA
                     0.055
                LG
                      0.33
                               0.30
                                        4.03
                                                0.45
 720
                UI
                                 36
                                         131
                                                 198
                                                          117
 721
722
                UI
UI
                         10
                                  4
                                           4
                                                   4
                                                                    0
                                                                             0
                                                                                      0
                                                                                              0
                                                                                                       0
                                  0
                                           0
                                                   0
                                                                             0
                          0
 723
                UI
 724
                UI
*
                          0
                                  0
                                           0
                                                   Ø
                                                                             0
                                                                                      0
                                                                                              0
                                                                                                       0
725
                      CP59 COMBINE
 726
                KM
                HC
 728
                     RT59A
                              ROUTE
 729
                KM
 730
                               FLOW
                RS
 731
                RC
                                     0.055 1049 0.0454 0.00
110.00 160.00 220.00 380.00 500.00 540.00
                     0.055
                              0.040
 732
                RX
                     20.00
                              70.00
 733
                    1970.0 1965.00 1964.00 1961.00 1961.00 1966.00 1968.00 1969.00
                        39
                            BASIN
 734
 735
                     WESTERN BOUNDARY - UPSTREAM OF TOMPSON PEAK PARKWAY. DISCHARGE TO
                KM
 736
                KM
                     REATA PASS WASH.
 737
738
                BA
                     0.153
                LG
                      0.23
                               0.31
                                        4.28
 739
                UI
                                138
                                                 553
                                                                                     70
                UI
UI
 740
                        13
                                 13
                                          0
                                                   0
                                                            0
                                                                    0
                                                                             0
                                                                                      0
                                                                                              0
                                                                                                       0
 741
                          0
                                  0
                                          0
                                                   0
                                                            0
 742
                UI
                                                                                      0
                UI
*
 743
                                                HEC-1 INPUT
                                                                                                            PAGE 24
LINE
                ID......1.....2......3......4......5.....6......7......8.......9......10
 744
                KK.
                     CP59A COMBINE
 745
                KM
 746
                HC
                     RT59B
                              ROUTE
 748
749
                KM
                RS
 750
                RC
                     0.055
                              0.040
                                                4061 0.0267
 751
                RX
                    150.00
                            180.00
                                      205.00 250.00 490.00 510.00 560.00 600.00
                RY
                    1924.0 1921.00 1918.00 1904.00 1904.00 1910.00 1913.00 1915.00
```

	753 754 755	KK K M K M		BASIN RN BOUNDA PASS WAS		STREAM O	F TOMPSOF	N PEAK PA	ARKWAY. [DISCHARGE	ТО		
	756	ВА	0.152	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
	757	LG	0.28	0.27	3.90	0.52	13	0.20		Was.	Juli		
	758 759	UI	0 20	112 12	405 12	557 Ø	320 0	211	135	82 0	54	33	
	760	UI	0	0	0	0	0	0	0	0	ø	0	
	761	UI	0	0	0		0	0	0	0	0	0	
	762	*	0	0	0	0	0	0	0	0	0	Ю	
		*											
		alc alc											
	763	KK	60	BASIN									
	764 765	KM KM											
	766	ВА	0.182										
	767	LG	0.27	0.31	2.79	1.24	15	56.	225	****		**	
	768 769	UI	0 63	61 47	234 34	399 25	504 17	304 10	235 10	170 10	124 10	91 0	
	770	UI	0	0	0	0	0	0	0	0	0	0	
	771	UI	0	0	0	0	0	0	0	0	0	0	
	772	*	0	0	0	0	Ó	Ø	0	6	0	0	
		*											
		*											
1						HEC-1	INPUT						PAGE 25
	(TAUC	TIS		-2		4					0	1.0	
	LINE	IU.				4.		0.		8	9	10	
		-											
	773 774	KK K M	CP60	COMBINE									
	775	HC	3										
		*											
		*											
		*											
	225	1218	BTCO	ROUTE									
	776 777	KK K M	RT60	KOUTE									
	778	RS	1	FLOW									
	779 780	RC RX	0.055	0.040 250.00	0.055		0.0243	0.00	830.00	990 00			
	781	RY							1830.00				
		*						C-CLASS - L					
		*											
		**											
	782	KK	47	BASIN									
	783	BA	0.547	DASTN									
	784	LG	0.27	0.30	4.17		3	636					
	785 786	UI	402	93 336	177 263	417 222	612 199	758 150	1044 119	675 104	545 86	470 71	
	787	UI	58	46	46	34	18	18	18	18	18	18	
	788	UI	18	0	0	0	0		0	0	0	0	
	789	UI *	0	0	0	0	0	0	0	0	0	0	
		*											
		**											
	790			BASIN									
	791 792	BA LG	0.175 0.28	0.28	4.08	0.45	4						
	793	UI	0	111	407		374		167	110	72	46	
	794	UI	32	16	13	13	0		0	0	0	0	
	795 796	UI	0	0	0	0	0	0	0	0	0	0	
	797	UI	0	Ø	ø		0	ø	0	0	0	0	
		*											
		*											
		*											
	798	KK	0046	COMBINE									
	799				and SUE	346							
	800	HC.	2										
		*											
		*											
0		*					-						2012-12
1						HEC-1	INPUT						PAGE 26
	LINE	ID.	1 .	2.	3.	4	5	6.	7.	8	9	10	
	801	KK	RT46	ROUTE									
	802	KM	ROUTE	FLOW FRO	M CP46	TO CP42							
	803 804	RS RC	0.050	FLOW 0.035	a asa	2771	A CAD A	0 00					
	805	RX	0.00	7.00	49.00	60.00	62.00	75.00	83.00				
	806	RY							2057.00				
		*											
		*											

807 808	KK BA	37 0.629										
809 810	LG UI	0.23	0.33	4.22 766		1 1745		820	614	432	335	
811 812	UI	226	174	129	86	75	34	34	34	34	0	
813 814	UI	0		0	0	0	0	0	0	0	0	
014	*	Ø	Ø	Ø	Ø	ě		Ø	ø	· O	Ø	
	*											
815	KK	RT37	ROUTE									
816 817	KM RS		FLOW FRO	M SUB37	TO CP42							
818 819	RC RX	0.050	0.040 33.00	0.050 37.00		0.0340 49.00		169.00	205.00			
820	RY *		2045.00									
	*											
	*											
821 822	KK B A	44 0.126										
823 824	LG UI	0.29 0	0.29 78	2.74 286	449	5 270		122	82	54	34	
825 826	UI	23 0	13	9	0	0	0	0	0	0	0	
827 828	UI	0	0	Ø Ø		0		0	0	0	0	
	*											
	*											
829 830	KK BA	42 0.318	BASIN									
831 832	LG UI	0.28	0.29 87	3.56 343			545	424	328	233	187	
833 834	UI	128 Ø	98	7 3	55	41	31	16	16 Ø	16 0	16	
						L INPUT						PAGE 27
LINE	ID.		2.							9.		
835 836	UI	0	0	0	0	0		0		0	0	
	* *											
	*											
837 838	KK K M		COMBINE nes SUB44	RT37	RTA6 and	L SUBAS						
839	HC *	4		, 111273	16140 411	30042						
	*											
	*											
840 841	KK K M	ROUTE	ROUTE FLOW FRO	M CP42	TO CP41							
842 843	RS RC	0.050	0.035	0.050		0.0304						
844 845	RX RY	0.00 1945.0	15.00 1944.00	29.00 1943.00					87.00 1945.00			
	* *											
	*											
846 847	KK BA	45 0.161										
848 849	LG UI	0.21	0.29	2.75 215		5 444		206	147	108	76	
850 851	UI	55 Ø	40	28	23	12	9	9	9	0	0	
852 853	UI	0	0	0	0	0	0	0	0	0	0	
	*											
	*											
854	KK	48	BASIN									
855 856	BA LG	1.570 0.23	0.35	4.28		0						
857 858	UI	0 1267	192 1118	192 1003	908	852 798	706		1620 495	2178 457	1719 420	
859 860	UI	358 94	300 94	245 63	37	210 37	171 37	147 37	147 37	101 37	94 37	
861	UI * *	37	37	37	0	0	0	0	0	0	0	
	*											

```
LINE
               ID.....1....2.....3.....4.....5.....6.....7....8.....9.....10
 862
                    RT48A
                            ROUTE
 863
               KM
 864
               RS
                            0.040
73.00
                                    0.055 2994 0.0470 0.00
78.00 82.00 91.00 114.00 125.00 133.00
 865
               RC
                    0.055
 866
               RX
                     0.00
 867
                   1972.0 1970.00 1967.00 1962.00 1961.00 1965.00 1971.00 1972.00
 868
                     D48A DIVERT
 869
               KM
                    DT48A
 870
               DT
                               00
                                       0.0
                      0.0 1000.0
                                   2000.0
                                            3000.0 3500.0 4083.0 4500.0 5000.0
 871
               DI
                           1000.0
                                   1880.0
                                           2530.0 2870.0 3373.0 3440.0
                                                                            3600.0
 873
               KK
                   RTD48A
                            ROUTE
 874
               KM
 875
                             FLOW
               RS
 876
               RC
                    0.055
                            0.040
                                     0.055
                                             1977 0.0415
                                           82.00 91.00 114.00 125.00 133.00
 877
               RX
                     0.00
                            73.00
                                     78.00
 878
               RY
*
                   1972.0 1970.00 1967.00 1962.00 1961.00 1965.00 1971.00 1972.00
 879
                     CP45 COMBINE
                    WESTERN BOUNDARY - THOMPSON PEAK PARKWAY. DISCHARGE TO EXISTING NATURAL
 880
               KM
 881
               KM
                    WASH 600 FEET NORTH OF WINDGATE PASS DRIVE.
 882
               KM
                    Combines SUB45, and D48A
 883
               HC
*
                       2
                            0.25
884
885
                     RT45
                            ROUTE
                    ROUTE FLOW FROM SUB45 TO CP41
               KM
 886
                             FLOW
               RS
               RC
RX
                                    0.050
39.00
                                              2935 0.0331
49.00 50.00
 887
                    0.050
                            0.035
                                            49.00
                                                            53.00
                                                                     60.00 65.00
 888
                     0.00
                            10.00
 889
                   1924.0 1920.00 1919.00 1918.00 1918.00 1920.00 1923.00 1924.00
               *
                                              HEC-1 INPUT
                                                                                                        PAGE 29
LINE
               ID......1.....2.....3.....4.....5......6......7.....8......9.....10
 890
                            BASIN
                    0.349
891
               BA
892
               LG
                     0.25
                              0.27
               UΙ
                      119
                                                49
                                                        29
0
                                                                19
                                                                                         19
894
               UI
                               88
                                        63
                                                                         19
                                                                                 19
                                                                                                   0000
895
               UI
                                        0
                                                 0
                                                                                  0
                                0
                                                                          0
                        0
               UI
897
               UI
                        0
                                                                          a
                                                                                  0
                                                                                          0
898
899
                     CP41 COMBINE
                    WESTERN BOUNDARY - THOMPSON PEAK PARKWAY. DISCHARGE TO EXISTING NATURAL
               KM
                    WASH 600 FEET NORTH OF WINDGATE PASS DRIVE.
 900
               KM
 901
               KM
                    Combines RT45, RT42 and SUB41
               HC
902
                        3
               KK
 903
                            ROUTE
                     RT41
 904
               KM
 905
                             FLOW
 906
               RC
                   0.050 0.035
200.00 260.00
                                   0.050 2454 0.0252 0.00
330.00 380.00 450.00 455.00 470.00 480.00
 907
               RX
                   1829.0 1827.00 1826.00 1823.00 1823.00 1825.00 1825.00 1826.00
                            BASIN
 910
               BA
                    0.116
 911
               1 G
                     0.23
                              0.21
                                      6.34
                                              9.79
 912
               UI
                               53
                                       200
 913
               UI
                       30
                               20
                                        16
                                                                          0
                                                                                  0
                                                                                                  0
 914
               UI
                        0
                                0
                                        ø
                                                 0
                                                         0
                                                                  0
                                                                          0
                                                                                  0
               UI
 915
                                                                                                   0
 916
               UI
                        0
                                         0
```

```
ROUTE
               917
                                       RT61
              918
919
                               KM
                                                 FLOW
                               RS
                                                      0.050 2458 0.0318 0.00
300.00 310.00 325.00 335.00 380.00 390.00
               920
                                RC
                                      0.050
                                               0.035
               921
                                RX
                                    240.00 270.00
                                     1793.0 1791.00 1791.00 1789.00 1789.00 1790.00 1790.00 1791.00
               922
1
                                                                    HEC-1 INPUT
                                                                                                                                        PAGE 30
             LINE
                               ID.....1.....2.....3.....4.....5.....6.....7.....8......9......10
               923
                                               BASIN
                                         62
                                      0.122
              925
926
                               LG
UI
                                       0.31
                                                 0.31
                                                           4.03
                                                                               12
205
                                                  184
                                                                                                                                 13
                                                            587
                                                                     365
                                                                                         111
                                UI
                                                                       0
                                                                                           0
                                                                                                              0
                                                                                                                        0
                                                                                                                                  0 0 0
                                                              0
                                                                                  0
                                                                                                     0
               928
                               UI
                                          0
                                                    0
                               UT
                                                              0
                                                                                           0
                                                                                                     0
                                                                                                              0
               929
                                UI
                                *
               931
                                KK
                                       CP62 COMBINE
               932
                               KM
               933
                               KM
KM
               934
               935
               936
                               KK
                                       RT62
                                               ROUTE
              937
938
                                KM
                                                 FLOW
                               RS
                                    0.050 0.035 0.050 4669 0.0240 0.00
400.00 420.00 430.00 540.00 950.00 970.00 990.00 1000.00
1727.0 1725.00 1723.00 1720.00 1722.00 1726.00 1726.00 1727.00
               939
                                RC
               940
                                RX
               941
                               KK
                                         63
                                               BASIN
              942
               943
                                BA
                                     0.386
              944
945
                               LG
UI
                                                   90
                                                           297
111
                                                                     577
93
                                                                               808
                                                                                         820
                                                                                                  525
                                                                                                            428
                                                                                                                      341
                                                                                                                                248
                                          a
               946
                                UI
                                                  155
                                                                                69
                                                                                          50
                                                                                                    44
                                                                                                             31
                                                                                                                       17
                                                                                                                                 17
               947
                                         17
                                                   17
                                                            17
                                                                       0
                                                                                                                        0
                                                                                                                                  0
               948
                               UI
                                          0
                                                   0
                                                              0
                                                                                 0
                                                                                                              0
                                                                                                                                  0
               949
                               UI
                                                              0
                                          0
                                                    0
                                                                        0
                                                                                                     0
               950
                               KK
                                      CP63 COMBINE
               951
                                KM
              952
953
                               KM
KM
               954
                               HÇ
1
                                                                   HEC-1 INPUT
                                                                                                                                        PAGE 31
             LINE
                               ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
              955
956
                                       RT63
                                              ROUTE
                               KM
               957
                               RS
                                                 FLOW
                                    0.050 0.035 0.050 5520 0.0185 0.00
130.00 210.00 500.00 540.00 630.00 660.00 670.00 680.00
1627.0 1623.00 1622.00 1617.00 1618.00 1626.00 1626.00 1627.00
               958
                               RX
RY
*
               959
               960
               961
                               KK
                                      D48ARETRIEVE
               962
                               KM
               963
                               DR
*
                                     DT48A
                                               ROUTE
               965
                               RS
```

```
0.055
               966
                                   0.055
                                            0.040
                                                            5668 0.0422 0.00
82.00 91.00 114.00 125.00 133.00
               967
                                                     78.00
                                     0.00
                                            73.00
                              RX
               968
                                   1972.0 1970.00 1967.00 1962.00 1961.00 1965.00 1971.00 1972.00
               969
970
                              KK
                                       49
                                            BASIN
                                    0.433
                              BA
               971
                              LG
                                     0.25
                                             0.31
                                                      3.18
                                                               0.87
                                                                         12
               972
                              UI
                                               77
                                                       160
                                                                369
                                                                        526
                                                                                 670
                                                                                         822
                                                                                                  514
                                                                                                           430
                                                                                                                   367
                              UI
                                      310
                                              247
                                                       195
                                                               172
15
                                                                                 105
15
                                                                                                   77
15
               973
                                                                        139
                                                                                           90
                                                                                                            59
                                                                                                                    50
                              UI
                                                        27
                                                                         15
                                                                                           15
                                                                                                            15
                                                                                                                     15
               974
                                               38
                                       38
               975
                              UI
                                                0
                                                         0
                                                                  0
                                                                                   0
                              UI
*
                                                         0
                                                                                                                      0
               976
                                        0
                                                0
                                                                  P
                                                                           0
                                                                                   0
                                                                                            0
                                                                                                    0
                                                                                                             0
               977
                                     CP49 COMBINE
               978
                              KM
                                   Combines RT48 and SUB49
                              HC
                                             1.91
                                                              HEC-1 INPUT
                                                                                                                           PAGE 32
1
              LINE
                              ID.....1....2.....3.....4.....5......6.....7....8.....9.....10
               980
                                     RT49
                                           ROUTE
                                   ROUTE FLOW FROM CP49 TO CP50
2 FLOW
               981
                              KM
               982
                              RS
               983
                                   0.045
                                            0.035
                                                     0.045
                                                              3915 0.0318
                                  0.00 30.00 39.00 45.00 60.00 71.00 134.00 177.00 1750.0 1749.00 1744.00 1742.00 1742.0 1745.00 1747.00 1751.00
               984
                              RX
               985
                              *
               986
                              KK
                                            BASIN
                                       43
               987
                              BA
                                    0.142
               988
989
                              LG
UI
                                    0.31
0
                                             0.34
77
                                                      3.18
290
                                                               0.76
487
                                                                         310
                                                                                 223
                                                                                         146
                                                                                                  103
                                                                                                            65
                                                                                                                    45
               990
                              UI
                                       29
                                               22
                                                        10
                                                                10
                                                                         10
                                                                                   0
                                                                                                    0
                                                                                                                     0
                              UI
               991
                                        0
                                                0
                                                         0
                                                                 0
                                                                                   0
                                                                                            0
                                                                                                    0
                                                                                                                      0
               992
                                                                 0
                                                                          0
                                                                                   0
                                                                                            0
                                                                                                    0
                                                                                                             0
                                                                                                                      0
                              UI
               993
                                        0
                                                 0
               994
                                       51
                                            BASIN
               995
                              BA
                                    0.721
               996
                              LG
                                     0.25
                                             0.27
                                                      3.62
                                                               0.69
                                                                          9
               997
                              UI
                                                       228
                                                               535
                                                                        791
                                                                                 977
                                                                                         1358
                                                                                                  912
                                                                                                                   621
                                        0
                                              121
                                                                                                           719
                              UI
UI
UI
               998
                                      533
                                               450
                                                       352
                                                                295
                                                                         264
                                                                                 207
                                                                                         158
                                                                                                  139
                                                                                                           120
                                               59
0
                                                                                  23
                                                                                                   23
                                                                                                            23
               999
                                       82
                                                        59
                                                                 52
                                                                         23
                                                                                          23
                                                                                                                    23
                                                         0
                                                                                                                     0
              1000
                                       23
                                                                 0
                                                                          0
                                                                                           0
                                                                                                             0
              1001
                              UI
                                                                                                    0
                                                                                                                     0
                                        0
                                                0
                                                                  0
              1002
                                       50
                                            BASIN
                              BA
LG
              1003
                                   0.137
              1004
                                             0.31
                                                      2.75
                                                               1.26
                                                                         17
                                    0.30
                                                                                                                    52
0
0
                              UI
              1005
                                               62
                                                       237
                                                               419
                                                                        324
                                                                                 222
                                                                                         159
                                                                                                  108
                                                                                                            75
              1006
                              UI
                                       36
                                               24
                                                        18
                                                                 9
                                                                          9
                                                                                   9
                                                                                           0
                                                                                                    0
                                                                                                             0
                              UI
UI
                                                0
                                                         0
                                                                                   0
                                                                                            0
                                                                                                    0
              1007
                                       0
                                                                  0
                                                                          0
                                                                                                             0
              1008
                                                         0
                                                                  0
                                                                                                    0
              1009
                              UI
                                        0
                                                 0
                                                                  0
                                                                                                    0
                                                                                                             0
                                                              HEC-1 INPUT
                                                                                                                           PAGE 33
  1
              LINE
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
              1010
                                     CP50 COMBINE
                              KM
                                    WESTERN BOUNDARY - THOMPSON PEAK PARKWAY. DISCHARGE TO EXISTING NATURAL
              1011
              1012
                                    WASH 1900 FEET SOUTH OF LEGACY BOULEVARD.
              1013
                              KM
                                   Combines RT49, SUB43, SUB51 and SUB50
                              HC
*
              1014
              1015
                                            ROUTE
```

KM

1017 1018 1019 1020	RS 2 FLOW RC 0.050 0.040 0.050 5454 0.0168 0.00 RX 100.00 140.00 195.00 220.00 330.00 360.00 370.00 380.00 RY 1609.0 1608.50 1608.50 1602.50 1602.50 1608.00 1608.00 1609.00 * * * * *	
1021 1022 1023 1024 1025 1026 1027 1028	KK 52 BASIN BA 0.598 LG 0.21 0.35 4.33 0.36 0 UI 0 126 353 731 990 1348 842 683 563 452 UI 338 286 224 163 138 102 87 62 62 33 UI 24 24 24 24 24 24 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 0 0 * * * * * * *	
1029 1030 1031 1032 1033 1034	KK RTS2 ROUTE KM ROUTE FLOW FROM SUBS2 TO CP53 RS 3 FLOW RC 0.055 0.040 0.055 8331 0.0383 0.00 RX 0.00 37.00 65.00 71.00 81.00 91.00 237.00 270.00 RY 1885.0 1882.00 1868.00 1865.00 1866.00 1869.00 1872.00 1883.00 * * * *	
1035 1036 1037 1038 1039 1040 1041 1042	KK 53 BASIN BA 0.700 LG 0.27 0.35 3.65 0.53 0 UI 0 106 165 398 630 779 982 1142 728 615 UI 538 469 403 328 269 243 207 164 136 117 UI 103 81 76 52 52 52 30 20 20 20 UI 20 20 20 20 20 20 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 0 0 * * * * * * * * * * * * *	
LINE	ID1234567,8910	
1043 1044 1045	KK CP53 COMBINE KM Combines RT52 and SUB53 HC 2 * * * * *	
1046 1047 1048 1049 1050 1051 1052 1053	KK 55 BASIN BA 0.341 LG 0.22 0.35 4.33 0.36 0 UI 0 88 348 611 908 593 457 359 259 202 UI 150 106 84 64 43 41 17 17 17 17 UI 17 0 0 0 0 0 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 0 0 * * * * * * * * * * * * *	
1054 1055 1056 1057 1058 1059 1060 1061	KK 56 BASIN BA 1.226 LG 0.23 0.35 4.12 0.41 0 UI 0 171 220 580 927 1179 1392 1914 1488 1091 UI 963 850 745 649 540 439 403 363 284 229 UI 206 188 148 131 117 84 84 84 57 33 UI 33 33 33 33 33 33 33 33 33 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1062 1063 1064	KK CP56 COMBINE KM Combines SUB55 and SUB56 HC 2 * * * *	
1065 1066 1067 1068 1069 1070	KK RT56 ROUTE KM ROUTE FLOW FRCM CP56 TO CP54 RS 2 FLOW RC 0.050 0.040 0.050 7162 0.0422 0.00 RX 0.00 13.00 71.00 114.00 132.00 154.00 189.00 224.00 RY 1807.0 1804.00 1803.00 1800.00 1799.00 1804.00 1806.00 1808.00 *	

1		*				HEC-1	INPUT						PAGE 35
	LINE	ID.	1.	2.	3.	4	5	6	7	8	9	10	
	1071	KK	54	BASIN									
	1072 1073	BA LG	0.488 0.25	0.35	3.75	0.50	0						
	1074 1075	UI	0 342	89 268	193 218	436 193	616 147	801 113	908 98	572 78	483 68	410 48	
	1076 1077	UI	43	43	19 0	17	17	17 Ø	17 0	17 0	17 0	0	
	1078	UI *	0	0	0	ø	ø	0	0	ø	ø	0	
		*											
		*											
	1079 1080	KK K M	57 WESTER	BASIN	DV - AT I	BELL ROAD	THET NO	DTH OF TH	HOMDSON I	DEAM DAD	PUAY.		
	1081 1082	KM BA				CITY STOR			HOMP SON	FEAN FAN	NWAT.		
	1082 1083 1084	LG UI	0.35	0.35	2.75 443	1.01	0 121	58	30	12	10	ø	
	1085	UI	0	166	0	0	0	0	0	0	0	0	
	1086 1087	UI	0	0	0	0	0	0	0	0	0	0	
	1088	UI *	0	0	0	0	0	0	0	0	0	0	
		*											
	Que :	*											
	1089 1090	KK K M	Combin	COMBINE es RT56	and SUB54	4							
	1091	HC ∗	3										
		*											
		*											
	1092 1093	KM		COMBINE N BOUNDA	RY - THO	MPSON PEA	K PARKWA	Y. DISCH	ARGE TO	EXISTING	CITY		
	1094 1095	KM KM			EL 1300 and CP54	FEET NORT	H OF BEL	L ROAD.					
	1096	HC *	2										
		*											
		*											
	1097 1098	KK KM	RT54	ROUTE									
	1099 1100	RS RC	0.050	FLOW 0.040	0.050	3822	0.0200	0.00					
	1101 1102	RX RY	120.00	126.00	130.00 1621.00 1			510.00					
		*											
		*											
1						HEC-1	INPUT						PAGE 36
	LINE	ID.	1-	2 .	3	4	5	6	7	8	9	10	
	1103	KK	64	BASIN									
	1104 1105	KM KM											
	1106 1107	BA LG	0.638 0.28	0.29	3.22	0.87	22						
	1108 1109	UI	0 3 7 9	130 309	346 254	732 187	991 153	1417 124	921 100	732 72	610 64	498 56	
	1110 1111	UI	25 Ø	25 0	25 Ø	25 Ø	25 0	25 0	0	0	0	0	
	1112	UI *	0	0	0	ø	0	0	0	0	0	0	
		*											
		*											
	1113	KK.	CP64	COMBINE									
	1114 1115	KM HC *	4										
		*											
		*											
	200.0	*											
1	1116	ZZ											
INPUT		TC DI	AGRAM OF										
LINE	(V) ROUTING	, T				PUMP FLOW		100					
NO.	(.) CONNECTO	rt.	(<==	- j KETURI	N OF DIA	ERTED OR I	HUMPED F	LOW					
54	01 V												

City of Scottsdale REATA - Reata Wash Flood Control Improvement Study 100 YEAR 24 Hour Storm Unit Hydrograph: S-Graph Storm: Multiple 02/23/2016 REATA - Reata Wash Flood Control Improvement Study

City of Scottsdale

24 Hour Storm Unit Hydrograph: S-Graph

```
Storm: Multiple
                              03/10/2015
                              Flood Control District of Maricopa County
                              100 YEAR
                              24 Hour Storm
                              Unit Hydrograph: S-Graph
Storm: Single
                              02/13/2015
                               * CROSSROADS EAST HEC-1 MODEL (BASINS 1-33), OUTFALL REATA PASS
                              * FILE NAME: 100-24NORTH_IH1 LAV (01/23/12)
                              * 100-Year, 24-Hour Storm, S-Graph, NOAA 14 Rainfall.
                              * HC CARDS INCLUDE TOTAL CONTRIBUTING AREA TO EACH CONCENTRATION POINT
* EXISTING RETENTION PROVIDED BY ECHO RIDGE SUBDIVISION INCLUDED IN MODEL
                              AND TAKEN FROM TROON NORTH PARK DRAINAGE REPORT.
                              * FUTURE CONDITIONS DETENTION BASIN FOR TROON NORTH PARK, DRAINAGE
REPORT PREPARED BY ARGUS CONSULTING (APRIL 23, 2010). NEW PARK BASIN
                              AND EXISTING FCD BASIN MODELED TOGETHER AS STAGE-STORAGE-DISCHARGE.
                              * EXISTING SEDIMENT BASIN AT HAPPY VALLEY ROAD AND ALAMEDA ROAD MODELED
                              AS STAGE STORAGE DISCHARGE.
  37 TO
                  OUTPUT CONTROL VARIABLES
                                              PRINT CONTROL
                         IPLOT
                                           Ø PLOT CONTROL
                         OSCAL
                                          0. HYDROGRAPH PLOT SCALE
     II
                  HYDROGRAPH TIME DATA
                                           3 MINUTES IN COMPUTATION INTERVAL
                          NMTN
                         IDATE
                                     1JAN99
                                              STARTING DATE
                                              STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
                         ITIME
                                        0000
                        NQ
NDDATE
                                        2000
                                     5JAN99
                                              ENDING DATE
                        NDTIME
                                        0357
                                              ENDING TIME
                        ICENT
                                          19
                                              CENTURY MARK
                     COMPUTATION INTERVAL
                                               0.05 HOURS
                          TOTAL TIME BASE
                                              99.95 HOURS
           ENGLISH UNITS
                DRAINAGE AREA
                                         SQUARE MILES
                 PRECIPITATION DEPTH
                                         INCHES
                 LENGTH, ELEVATION
                                         CUBIC FEET PER SECOND
                 STORAGE VOLUME
                                         ACRE-FEET
                 SURFACE AREA
                                         ACRES
                 TEMPERATURE
                                         DEGREES FAHRENHEIT
                   INDEX STORM NO. 1
 39 JD
                          STRM
                                       4.86 PRECIPITATION DEPTH
                                       0.00 TRANSPOSITION DRAINAGE AREA
40 PI
                    PRECIPITATION PATTERN
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                               0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                   0.00
                                                                                           0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                                              0.00
                                                                                           0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                                      0.00
                                                                                                                  0.00
                                              0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                                0.00
                                                                                           0.00
                                                                                                                  0.00
                                                                                                                             0.00
                                                                     0.00
                                                                                                      0.00
                                   0.00
                                              0.00
                                                                     0.00
                                                                                0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                            0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                       0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                                   0.00
                                              0.00
                                                                     0.00
                        0.00
                                                          0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                                                          0.00
                        0.00
                                   0.00
                                              0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        9 99
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                9.91
                                                                                           0.01
                                                                                                      9 91
                                                                                                                  0.01
                                                                                                                             0.01
                        0.02
                                   0.02
                                              0.02
                                                          0.02
                                                                     0.02
                                                                                0.06
                                                                                           0.06
                                                                                                      0.06
                                                                                                                  0.06
                                                                                                                             0.06
                        0.01
                                   0.01
                                              0.01
                                                          0.01
                                                                     0.01
                                                                                0.01
                                                                                           0.01
                                                                                                      0.01
                                                                                                                  0.01
                                                                                                                             0.01
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                                                                                           0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                                      0.00
                                                                                                                  0.00
                                              0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                       0.00
                                                                                                                             0.00
                                                          0.00
                                                                                                                  0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                       0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        9.99
                                   0.00
                                              0.00
                                                          9.99
                                                                     0.00
                                                                                0.00
                                                                                           9.99
                                                                                                      9.99
                                                                                                                  0.00
                                                                                                                             9.99
                                              0.00
                                                                     0.00
                                                                                0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                                          0.00
                                                                                           0.00
                                                                                                      0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                       0.00
                                                                                                                             0.00
                                                                                                                  0.00
                        0.00
                                   0.00
                                              0.00
                                                          0.00
                                                                     0.00
                                                                                0.00
                                                                                           0.00
                                                                                                      0.00
                                                                                                                  0.00
                                                                                                                             0.00
```

	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50 JD	0.00 INDEX STORM	0.00 NO 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30 00	STRM TRDA	4.83 1.00		TATION DEF						
0 PI		ION PATTERN								45
	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.02	0.00	0.00	0.00	0.00 0.02	0.01 0.06	0.01 0.06	0.01 0.06	0.01 0.06	0.01 0.06
	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00
	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00
	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00
51 JD	INDEX STORM									
	STRM TRDA	4.74 5.00		TATION DEF SITION DRA		v .				
0 PI	PRECIPITAT 0.00	ION PATTERN 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	24.00.00	12 1 12 200	0.00	0.00		0 00	0.00	0.00	0.00	The state of the s
	0.00	0.00			0.00	0.00	0.00			0.00
	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00 0.00
	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.99 9.90 9.90 9.90 9.90 9.90 9.90 9.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.00 8.00 9.00 9.00 9.00 9.00 9.00 9.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.00 8.00 9.00 9.00 9.00 9.00 8.00 9.00 9	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00	9. 90 9. 90 90 90 90 90 90 90 90 90 90 90 90 90 9	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.00 8.00 8.00 9.00 9.00 9.00 9.00 9.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.00 8.00 9.00 9.00 9.00 9.00 9.00 9.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

inited a	t 11.40 on 2	o Mai Zu								_
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00
52 JD	INDEX STORM									
	STRM TRDA	4.61 10.00		TATION DEF DSITION DRA		4				
0 PI		TION PATTERN								
	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	0.02 0.01	0.02 0.01	0.02 0.01	0.02 0.01	0.02	0.06 0.01	0.06 0.01	0.06 0.01	0.06 0.01	0.06
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
53 ID	INDEX STORM	NO. 5 4.46	PRECIP	CTATION DEF	этн					
	TRDA	20.00		SITION DRA		4				
Ø PI	PRECIPITAT 0.00	ION PATTERN 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.01	0.00	0.00 0.01	0.00 0.01	0.00 0.01
	0.02	0.02	0.02	0.02	0.02	0.06	0.06	0.06	0.06	0.06
	0.01 0.00	0.01 0.00	0.01 0.00	0.01 0.00	0.01	0.01 0.00	0.01	0.01	0.01 0.00	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	
	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	
	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	
	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	
	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	
	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	
	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	
	****			10.00		7777					
*** *** *	** *** *** *** ***	*** *** *	** *** **	* *** ***	* *** *** **	* *** ***	*** *** **	* *** ***	*** *** **	* *** *** *	** *** ***

62 KK	* RET1 * * **********	STORAGE									
66 KO	OUTPUT CONTROL IPRNT		PRINT CO	NTROL							
	IPLOT QSCAL	0	PLOT CON HYDROGRA	TROL	SCALE						
*** *** *	** *** *** ***	*** *** *	** *** **	* *** ***	* *** *** **	* *** ***	*** *** **	* *** ***	*** *** **	* *** *** *	** *** ***

85 KK	* RET2 *	STORAGE									

90 KO	OUTPUT CONTROL IPRNT IPLOT QSCAL	5 Ø	PRINT CO PLOT CON HYDROGRA	TROL	CALE						
*** *** **	** *** *** *** ***	*** *** *	** *** **	* *** ***	* *** *** **	* *** ***	*** *** **	* *** ***	*** *** **	* *** *** *	** *** ***

113 KK	* RET5 * * * **********	STORAGE									
117 KO	OUTPUT CONTROL										
b	IPRNT IPLOT QSCAL WARNING EXCESS AT POND	0 0.	PLOT CON HYDROGRA	TROL PH PLOT S		ET TO ZER	0				
*** *** **	** *** *** *** ***	*** *** *	** *** **	* *** ***	* *** *** **	* *** ***	*** *** **	* *** ***	*** *** **	* *** *** *	** *** ***

142 KK	* * * * * * * * * * * * * * * * * * *	STORAGE									
	* * *********										
146 KO	TPLOT	5	PRINT CO	IROL	cal E						
	ŲSCAL	Ų.	HYDROGRA	PR PLOI 3	CALE						
*** *** **	** *** *** *** ***	*** *** *	** *** **	* *** ***	*** *** **	* *** ***	*** *** **	* *** ***	*** *** **	* *** *** *	** *** ***

173 KK	* RET7 * * * ********	STORAGE									
177 KO	OUTPUT CONTROL IPRNT IPLOT	5									

QSCAL 0. HYDROGRAPH PLOT SCALE

201 KK RET3 *

STORAGE

205 KO

OUTPUT CONTROL VARIABLES 5 PRINT CONTROL
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE IPRNT IPLOT

QSCAL

216 KK

STORAGE RET6 *

220 KO OUTPUT CONTROL VARIABLES

5 PRINT CONTROL 0 PLOT CONTROL IPLOT 0. HYDROGRAPH PLOT SCALE QSCAL

*** ***

DET20 * 427 KK STORAGE

431 KO OUTPUT CONTROL VARIABLES

5 PRINT CONTROL
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE IPLOT QSCAL

RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES

				TIME IN	HOURS, AREA					
+	OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE FL 6-HOUR	OW FOR MAXIN	MUM PERIOD 72-HOUR	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
+	HYDROGRAPH AT	01	366.	12.15	33.	9,	3.	0.16		
#-	ROUTED TO	RET1	366.	12.15	33.	9.	3.	0.16		
+	ROUTED TO	RT1	351.	12.20	33.	9.	3.	0.16		
#	HYDROGRAPH AT	02	384.	12.10	33.	10.	3.	0.14		
н	ROUTED TO	RET2	384.	12.10	32.	9.	3.	0.14		
#	2 COMBINED AT	CP2	703.	12.10	65.	18.	6.	0.30		
#	ROUTED TO	RT2	664.	12.15	65.	18.	6.	0.30		
+	HYDROGRAPH AT	05	416.	12.05	38.	12.	4.	0.14		
*	ROUTED TO 2 COMBINED AT	RET5	416.	12.05	38.	11.	4.	0.14		
#-	ROUTED TO	CP5	1021.	12.10	104.	30.	10.	0.44		
+	HYDROGRAPH AT	RT5	995.	12.15	104.	30.	10.	0.44		
#	ROUTED TO	04	347.	12.05	26.	7.	2.	0.12		
#	ROUTED TO	RET4 RT4	347.	12.05	26. 26.	7.	2.	0.12		
т	HYDROGRAPH AT	K14	323.	12.13	20.	7.5	2.	0.12		

+		09	300.	12.10	23.	6.	2.	0.11
4	HYDROGRAPH AT	07	333.	12.10	31.	9.	3.	0.12
+	ROUTED TO	RET7	333.	12.10	31.	9.	3.	0.12
*	3 COMBINED AT	CP7	939.	12.10	80.	22.	7.	0.36
+	ROUTED TO	RT7	917.	12.15	80.	22.	7.	0.36
+	HYDROGRAPH AT	03:	424.	12.05	33.	9.	3.	0.15
*	ROUTED TO	RET3	424.	12.05	33.	9.	3.	0.15
*	ROUTED TO	RT3	367.	12.15	33.	9,	3.	0.15
	ROUTED TO	RET6	367.	12.15	33.	9.	3.	0.15
+	HYDROGRAPH AT	06	489.	12.10	45.	13.	4.	0.18
+	4 COMBINED AT	CP6	2713.	12.15	261.	75.	25.	1.13
+	ROUTED TO	RT6	2301.	12.20	261.	74.	25.	1,13
+	HYDROGRAPH AT	11	460.	12.10	35.	9.	3.	Ø.17
+	ROUTED TO	RT11	380.	12.20	35.	9.	3.	0.17
÷	HYDROGRAPH AT	08	361.	12.10	31.	9.	3'.	0.13
*	ROUTED TO	RT8	307.	12.15	31.	9.	3.	0.13
+	HYDROGRAPH AT	10	1120.	12.10	107.	31.	10.	0.46
4	4 COMBINED AT	CP10	3914.	12.20	430.	123.	41.	1.90
+	ROUTED TO	RT10	3779.	12.20	430.	123.	41.	1.90
+	HYDROGRAPH AT	14	397.	12.10	33.	9.	3.	0.15
+	HYDROGRAPH AT	12	695.	12.15	65.	18.	6.	0.30
+	2 COMBINED AT	CP12	1086.	12.10	98.	27.	9.	0.46
	ROUTED TO	RT12A	1067.	12.15	98.	27.	9.	0.46
*	ROUTED TO	RT128	1030.	12.20	98.	27.	9.	0.46
	HYDROGRAPH AT		558.	12.15	52.	15.	5.	0.26
	3 COMBINED AT	13						
*	ROUTED TO	CP13	5282.	12.20	575.	163.	54.	2.62
+	HYDROGRAPH AT	RT13	5140.	12.25	575.	163.	54.	2.62
+	2 COMBINED AT	16	1125.	12.15	111.	31.	10.	0.52
+	ROUTED TO	CP16	6071.	12.25	682.	193.	64.	3.14
+	HYDROGRAPH AT	RT16	5377.	12.40	682.	193.	64.	3.14
#		29	404.	12.10	31.	8.	3.	0.15
+	ROUTED TO	RT29	388.	12,10	31.	8.	3.	0.15
+	HYDROGRAPH AT	21	369.	12.05	26.	7.	2.	0.13
4	2 COMBINED AT	CP21	748.	12.10	57.	15.	5.	0.28

4	ROUTED TO	RT21	702.	12.15	57.	15.	5.	0.28
¥	HYDROGRAPH AT	15	1621.	12.15	145.	39.	13.	0.70
÷	ROUTED TO	RT15	1611.	12.15	145.	39.	13.	0.70
¥.	HYDROGRAPH AT	18	361.	12.10	32.	9.	3.	0.14
+	HYDROGRAPH AT	20	682.	12.10	56.	16.	5.	0.26
ů.	4 COMBINED AT	CP20	3262.	12.15	288.	77.	26.	1.38
+	ROUTED TO	DET20	3262.	12.15	288.	78.	26.	1.38
*	HYDROGRAPH AT	33	460.	12.10	34.	9.	3.	0.18
+	ROUTED TO	RT33	399.	12.20	34.	9.	3.	0.18
+	HYDROGRAPH AT	27	275.	12.10	21.	6.	2.	0.11
+	HYDROGRAPH AT	28	422.	12.10	35.	9.	3.	0.17
*	3 COMBINED AT	CP28	1038.	12.15	91.	24.	8.	0.45
+	ROUTED TO	RT28	1007.	12.15	91.	24.	8.	0.45
+	HYDROGRAPH AT	26	168.	12.10	13.	3.	1.	0.06
+	3 COMBINED AT	CP26	4387.	12.15	389.	104.	35.	1.90
*	ROUTED TO	RT26	4388.	12.15	389.	104.	35.	1.90
+	HYDROGRAPH AT	19	416.	12.10	33.	9.	3.	0.15
+	2 COMBINED AT	CP19	4731.	12.15	421.	113.	38.	2.05
	ROUTED TO	RT19	4555.	12.20	421.	113.	38.	2.05
HE.	HYDROGRAPH AT	32	963.	12.15	80.	21.	7.	0.44
+	ROUTED TO	RT32	894.	12.20	80.	21.	7.	0.44
+	HYDROGRAPH AT	31	968.	12.15	86.	23.	8.	0.50
4	2 COMBINED AT	CP31	1836.	12.15	165.	43.	14.	0.94
4	ROUTED TO	RT31	1836.	12.20	165.	43,	14.	0.94
+	HYDROGRAPH AT	25	576.	12.15	55.	15.	5.	0.27
+	3 COMBINED AT	CP25	6863.	12.20	633.	170.	57.	3.26
#	ROUTED TO	RT25	6266.	12.30	633.	170.	57.	3.26
ж	HYDROGRAPH AT	24	730.	12.15	75.	21.	7.	0.38
#	2 COMBINED AT	CP24	6864.	12.25	705.	190.	63.	3.64
+	HYDROGRAPH AT	17	931.	12.05	76.	22.	7.	0.32
#	ROUTED TO	RT17	842.	12.15	76.	22.	7.	0.32
+	HYDROGRAPH AT	23	671.	12.15	71.	19.	6.	0.28
#	2 COMBINED AT	CP23	1513.	12.15	147.	41.	14.	0.60
*	2 COMBINED AT	CP24A	8015.	12.25	847.	229_	76.	4.24

+	ROUTED TO	RT24A	7839.	12.30	847.	229.	76.	4.24
+	HYDROGRAPH AT	30	692.	12.20	68.	17.	6.	0.39
	HYDROGRAPH AT							
+	4 COMBINED AT	22	453.	12.15	45.	12.	4.	0.22
+		CP22	13015.	12.35	1588.	437.	146.	8.00
+	ROUTED TO	RT22A	13016.	12.35	1588.	437.	146.	8.00
+	DIVERSION TO	DT22A	2000.	12.25	291.	80.	27.	8.00
÷	HYDROGRAPH AT	D22A	11016.	12.35	1297.	356.	119.	8.00
**	ROUTED TO	RT22B	10831.	12.40	1297.	356.	119.	8.00
	HYDROGRAPH AT	1,000	#101C;		2001110	58/5.1	1,221,10	0,000
+		58	319.	12.05	22.	6.	2.	0.11
÷	2 COMBINED AT	CP58	10859.	12.40	1316.	361.	121.	8.11
+	ROUTED TO	RT58	10627.	12.40	1316.	361.	121.	8.11
æ	HYDROGRAPH AT	35	1043.	12.10	70.	18.	6.	0.41
	ROUTED TO							
+	HYDROGRAPH AT	RT35	908.	12.15	70.	18.	6.	0.41
+	Triblodia i i i	34	1186.	12.10	80.	20.	7.	0.46
Ŧ	2 COMBINED AT	CP34	2057.	12.10	149.	38.	13.	0.87
	ROUTED TO	0.724	1007	12.15	140	38.	13.	0.07
*	HYDROGRAPH AT	RT34	1887.	12,13	149.	50.	15.	0.87
+	THE BROOKER IN TH	38	166.	12.05	9.	2.	1.	0.06
+	HYDROGRAPH AT	59	136.	12.10	9.	2.	1.	0.05
+	4 COMBINED AT	CP59	11274.	12.40	1464.	399.	133.	9.09
	ROUTED TO							
*	UVDBOCBADU AT	RT59A	11210.	12.45	1464.	399.	133.	9.09
+	HYDROGRAPH AT	39	401.	12.05	25.	6.	2.	0.15
+	2 COMBINED AT	CP59A	11214.	12.45	1486.	405.	135.	9.24
	ROUTED TO							
+	HYDROGRAPH AT	RT59B	10956.	12.50	1486.	405.	135.	9.24
*		40	385.	12.05	27.	7.	2.	0.15
+	HYDROGRAPH AT	60	326.	12.10	25.	7.	2.	0.18
+	3 COMBINED AT	CP60	10990.	12.50	1530.	417.	139.	9.58
+	ROUTED TO	RT60	10652.	12.55	1530.	417.	139.	9.58
4	HYDROGRAPH AT	47	951.	12.20	91.	23.	8.	0.55
	HYDROGRAPH AT							
+	2 COMPTNED AT	46	436.	12.10	28.	7.	2.	0.17
+	2 COMBINED AT	CP46	1302.	12.15	119.	31.	10.	0.72
#	ROUTED TO	RT46	1242.	12.20	119.	31.	10.	0.72
#	HYDROGRAPH AT	37	1439.	12.10	104.	26.	9.	0.63
#	ROUTED TO	RT37	1334.	12.20	104.	26.	9.	0.63
	HYDROGRAPH AT							

	11.40	711 20 IVII	ui 2010					
+		44	248.	12.10	14.	4.	1.	0.13
	HYDROGRAPH AT	42	651.	12.10	47.	12.	4.	0.32
	4 COMBINED AT	CP42	3352.	12.15	282.	72.	24.	1.79
	ROUTED TO	RT42	3155.	12.20	282.	72.	24.	1.79
	HYDROGRAPH AT	45	259.	12.10	17.	4.	1.	0.16
	HYDROGRAPH AT	48	2150.	12.25	247.	62.	21.	1.57
	ROUTED TO	RT48A	2134.	12.30	247.	62.	21.	1.57
	DIVERSION TO	DT48A	1967.	12.30	239.	60.	20.	1.57
	HYDROGRAPH AT	D48A	167.	12.30	8.	2.	1.	1,57
	ROUTED TO	RTD48A	147.	12.35	8.	2.	1.	1.57
	2 COMBINED AT	CP45	264.	12.15	25.	7.	2.	0.25
	ROUTED TO							
	HYDROGRAPH AT	RT45	247.	12.25	25.	7.	2.	0.25
	3 COMBINED AT	41	745.	12.10	56.	16.	5.	0.35
	ROUTED TO	CP41	3950.	12.20	360.	94.	31.	2.39
	HYDROGRAPH AT	RT41	3815.	12.25	360.	94.	31.	2.39
		61	313.	12.10	28.	8.	3.	0.12
	ROUTED TO	RT61	267.	12.15	28.	8.	3.	0.12
	HYDROGRAPH AT	62	338.	12.05	21.	6.	2.	0.12
	4 COMBINED AT	CP62	12119.	12.50	1882.	510.	170.	12.21
	ROUTED TO	RT62	11574.	12.60	1882.	510.	170.	12.21
	HYDROGRAPH AT	63	683.	12.15	68.	21.	7.	0.39
	2 COMBINED AT	CP63	11652.	12.60	1940.	528.	177.	12.59
	ROUTED TO	RT63	11281.	12.70	1940.	528.	177.	12.59
	HYDROGRAPH AT	D48A	1967.	12.30	239.	60.	20.	1.57
	ROUTED TO	RT48B	1933.	12.40	239.	60.	20.	1.57
	HYDROGRAPH AT	49	660.	12.20	65.	18.	6.	0.43
	2 COMBINED AT	CP49	2337.	12.30	302.	77.	26.	1.91
	ROUTED TO	RT49	2298.	12.40	302.	77.	26.	1.91
	HYDROGRAPH AT	43	305.	12.10	18.	5.	2.	0.14
	HYDROGRAPH AT	51	1135.	12.20	112.	30.	10.	0.72
	HYDROGRAPH AT	50	265.	12.10	19.	6.	2.	0.14
	4 COMBINED AT				V			
	ROUTED TO	CP50	3158.	12.30	445.	117.	39.	2.91
	HYDROGRAPH AT	RT50	3006.	12.45	445.	117.	39.	2.91
+		52	1174.	12.15	96.	24.	8.	0.60

4	ROUTED TO	RT52	1040.	12.30	96.	24.	8.	0.60
4	HYDROGRAPH AT	53	1037.	12.20	99.	25.	8.	0.70
÷	2 COMBINED AT	CP53	2027.	12.25	194.	49.	16.	1.30
*	HYDROGRAPH AT	55	737.	12.10	55.	14.	5.	0.34
+	HYDROGRAPH AT	56	1809.	12.25	188.	47.	16.	1.23
+	2 COMBINED AT	CP56	2423.	12.20	241.	60.	20.	1.57
+	ROUTED TO	RT56	2194.	12.30	241.	60.	20.	1.57
*	HYDROGRAPH AT	54	818.	12.15	70.	18.	6.	0.49
+	HYDROGRAPH AT	57	194.	12.05	9.	2.	1.	0.08
+	3 COMBINED AT	CP54	2841.	12.25	318.	79.	26.	2.14
Ť	2 COMBINED AT	CP54A	4812.	12.25	505.	126.	42.	3.44
*	ROUTED TO	RT54	4572.	12.35	505.	126.	42.	3.44
+	HYDROGRAPH AT	64	1119.	12.15	111.	33.	11.	0.64
Į.	4 COMBINED AT	CP64	15618.	12.60	2828.	759.	254.	19.58
977		2,100		220.00				_,,,,

^{***} NORMAL END OF HEC-1 ***

Appendix C Exhibits

Exhibit A - Soil Type Map

Exhibit B - Land Use Map

Exhibit C – Watershed Map

REATA WASH FLOOD CONTROL IMPROVEMENT STUDY

REATA WASH FLOOD CONTROL IMPROVEMENT STUDY

REATA WASH FLOOD CONTROL IMPROVEMENT STUDY

